Способы графического изображения рядов распределения

Понятие Характеристика
Полигон распределения Применяется для изображения дискретных рядов распределения. По оси координат по оси абсцисс откладываются варианты (х), по оси ординат – частоты (f). Из точки, соответствующей значению варианты, на оси абсцисс восстанавливается перпендикуляр; на оси ординат из точки соответствующей частоте данной варианты проводится линия параллельная оси абсцисс. На пересечении ее с перпендикуляром отмечается точка, имеющая координаты варианты и частоты. Полученные точки соединяются отрезками прямой.
Гистограмма распределения Интервальный вариационный ряд изображается в виде прямоугольников, построенных на оси (х). Ширина прямоугольников равна интервалу, а высота пропорциональна соответствующей частоте. Если середины верхних сторон прямоугольников соединить прямыми, то получится полигон распределения
Кумулята Строится по накопленным (кумулятивным) частотам, которые наносятся на перпендикулярную ось графика. На оси (у) откладываются либо дискретные значения признака, либо интервалы. В этом случае накопленная частота соотносится с верхней границей интервала. Полученные точки соединяются прямыми, образуя ломаную линию, которая возрастает от нуля до высоты, равной общей сумме частот.

Темы Средние величины и показатели вариации(задачи 2, 3 и 4)

Виды средних величин

Вид средней Показатель степени Формулы расчета
простая взвешенная
Средняя арифметическая Способы графического изображения рядов распределения - student2.ru = Способы графического изображения рядов распределения - student2.ru Способы графического изображения рядов распределения - student2.ru
Средняя гармоническая -1 Способы графического изображения рядов распределения - student2.ru Способы графического изображения рядов распределения - student2.ru Способы графического изображения рядов распределения - student2.ru ;где М= x*f
Средняя геометрическая Способы графического изображения рядов распределения - student2.ru Способы графического изображения рядов распределения - student2.ru Способы графического изображения рядов распределения - student2.ru
Средняя квадратическая Способы графического изображения рядов распределения - student2.ru Способы графического изображения рядов распределения - student2.ru Способы графического изображения рядов распределения - student2.ru

Модa и Медиана

.

Мода- значение признака (варианты), наиболее часто встречающегося в данной совокупности, т.е. варианта, имеющая наибольшую частоту.

1. Пример определение Моды дискретного ряда на примере:

Х
f

Для определения Моды необходимо найти варианту имеющую наибольшие частоты

Мо = 15, так как f= 28 = max

2. Определение моды интервального ряда несколько сложнее.

Сначала определяем модальный интервал.

Модальным является интервал, имеющий наибольшую частоту.

Затем значение моды определяется по следующей формуле:

Способы графического изображения рядов распределения - student2.ru

Где: Хмо –нижняя граница модального интервала; iмо- величина модального интервала; fMo , fMo-1, fMo+1 – частототы модального, предмодального и послемодального интервалов.

Определение Моды графическим путем. Для этого строят гистограмму распределения и в интервале, имеющим максимальную частоту проводя диагонали. Из точки пересечения диагоналей опускают перпендикуляр на ось Х. Это и будет значение Моды.

Способы графического изображения рядов распределения - student2.ru

Медиана - это значение признака, находящегося в середине ранжированного вариационного ряда.

Определение Медианы дискретного ряда.

Исходные данные

Х f Sf (накопленные частоты)

1. Для нахождения Ме сначала определяют № медианы по формуле:

Способы графического изображения рядов распределения - student2.ru

2. После этого определяют накопление частоты.

После определения накопленных частот находят значение Медианы следующим образом:

а) сравниваем номер Me с накопленными частотами. Ме­дианой будет являться значение признака накопления частоты, которого в точности совпадает с номером медианы или является к нему ближайшей большей.

Медиана интервального ряда

Х f Sf
6-12
12-18
18-24
24-30
30-36
    Sf=30

1. Сначала определяется номер Медианы

Способы графического изображения рядов распределения - student2.ru Способы графического изображения рядов распределения - student2.ru

2. Затем рассчитываются накопленные частоты ( гр. 3 в таблице исходных данных)

3. Определяется Медианный интервал :

Медианным - является интервал, накопленная частота ко­торого в точности совпадает с номеров Медианы или является к нему ближайшим большим.

В примере ближайшая большая к номеру медианы накопленная частота соответствует интервалу 18-24.

4. Определяется значение Медианы по формуле:

Способы графического изображения рядов распределения - student2.ru

Способы графического изображения рядов распределения - student2.ru

Графически медиану можно определить на основе построения кумуляты распределения.

Способы графического изображения рядов распределения - student2.ru

Показатели вариации

Показатель вариации Формула
Размах вариации R Способы графического изображения рядов распределения - student2.ru
Среднее линейное отклонение Способы графического изображения рядов распределения - student2.ruили Способы графического изображения рядов распределения - student2.ru Способы графического изображения рядов распределения - student2.ru
Дисперсия признака Способы графического изображения рядов распределения - student2.ruили G Способы графического изображения рядов распределения - student2.ru
Среднее квадратическое отклонение Способы графического изображения рядов распределения - student2.ru
Коэффициент осцилляции Способы графического изображения рядов распределения - student2.ru
Линейный коэффициент вариации Способы графического изображения рядов распределения - student2.ru
Коэффициент вариации Способы графического изображения рядов распределения - student2.ru

Тема: Ряда динамики (задача 6)

Наши рекомендации