Перпендикулярности двух прямых

1. Если прямые L1 и L2 заданы общими уравнениями

А1х + В1у + С1 = 0 и А2х + В2у + С2 = 0,

то угол между ними равен углу между их нормалями, то есть между векторами {A1,B1} и {A2,B2}. Следовательно,

Перпендикулярности двух прямых - student2.ru . (7.10)

Условия параллельности и перпендикулярности прямых тоже сводятся к условиям параллельности и перпендикулярности нормалей:

Перпендикулярности двух прямых - student2.ru - условие параллельности, (7.11)

Перпендикулярности двух прямых - student2.ru - условие перпендикулярности. (7.12).

2. Если прямые заданы каноническими уравнениями (7.5), по аналогии с пунктом 1 получим:

Перпендикулярности двух прямых - student2.ru , (7.13)

Перпендикулярности двух прямых - student2.ru - условие параллельности, (7.14)

Перпендикулярности двух прямых - student2.ru - условие перпендикулярности. (7.16).

Здесь Перпендикулярности двух прямых - student2.ru и Перпендикулярности двух прямых - student2.ru - направляющие векторы прямых.

3. Пусть прямые L1 и L2 заданы уравнениями с угловыми коэффициентами (7.8)

у = k1x +b1 и y = k2x + b2, где Перпендикулярности двух прямых - student2.ru , а α1 и α2 – углы наклона прямых к оси Ох, то для угла φ между прямыми справедливо равенство: φ = α2 - α1. Тогда

Перпендикулярности двух прямых - student2.ru . (7.17)

Условие параллельности имеет вид: k1=k2, (7.18)

условие перпендикулярности – k2=-1/k1, (7.19)

поскольку при этом tgφ не существует.

Расстояние от точки до прямой.

Рассмотрим прямую L и проведем перпендикуляр ОР к ней из начала координат (предполагаем, что прямая не проходит через начало координат). Пусть n – единичный вектор, направление которого совпадает с ОР. Составим уравнение прямой L, в которое входят два параметра: р – длина отрезка ОР и α – угол между ОР и Ох.

Перпендикулярности двух прямых - student2.ru уДля точки М, лежащей на L, проекция вектора ОМ на прямую

Перпендикулярности двух прямых - student2.ru Перпендикулярности двух прямых - student2.ru L ОР равна р. С другой стороны, прnOM=n·OM. Поскольку

Р n={cosα, sinα}, a OM={x,y}, получаем, что

Перпендикулярности двух прямых - student2.ru Перпендикулярности двух прямых - student2.ru Перпендикулярности двух прямых - student2.ru Перпендикулярности двух прямых - student2.ru nMx cosα + y sinα = p, или

О х x cosα + y sinα ­­- p = 0 - (7.20)

- искомое уравнение прямой L, называемое нормальным

уравнением прямой (термин «нормальное уравнение» связан

с тем, что отрезок ОР является перпендикуляром, или нормалью, к данной прямой).

Определение 7.2. Если d – расстояние от точки А до прямой L, то отклонениеδ точки А от прямой L есть число +d, если точка А и начало координат лежат по разные стороны от прямой L, и число –d, если они лежат по одну сторону от L.

Теорема 7.1. Отклонение точки А(х00) от прямой L, заданной уравнением (7.20), определяется по формуле:

Перпендикулярности двух прямых - student2.ru . (7.21)

Доказательство.

Перпендикулярности двух прямых - student2.ru Перпендикулярности двух прямых - student2.ru Перпендикулярности двух прямых - student2.ru Перпендикулярности двух прямых - student2.ru у Q Проекция OQ вектора ОА на направление ОР равна

P A n·OA=x0cosα + y0sinα. Отсюда δ = PQ=OQ-OP=OQ-p=

Перпендикулярности двух прямых - student2.ru Перпендикулярности двух прямых - student2.ru Перпендикулярности двух прямых - student2.ru Перпендикулярности двух прямых - student2.ru nx0cosα + y0sinα - p, что и требовалось доказать.

O

L

Следствие.

Расстояние от точки до прямой определяется так:

Перпендикулярности двух прямых - student2.ru (7.22).

Замечание. Для того, чтобы привести общее уравнение прямой к нормальному виду, нужно умножить его на число Перпендикулярности двух прямых - student2.ru , причем знак выбирается противоположным знаку свободного члена С в общем уравнении прямой. Это число называется нормирующим множителем.

Пример. Найдем расстояние от точки А(7,-3) до прямой, заданной уравнением

3х + 4у + 15 = 0. А² + B²=9+16=25, C=15>0, поэтому нормирующий множитель равен

-1/5, и нормальное уравнение прямой имеет вид: Перпендикулярности двух прямых - student2.ru Подставив в его левую часть вместо х и у координаты точки А, получим, что ее отклонение от прямой равно

Перпендикулярности двух прямых - student2.ru Следовательно, расстояние от точки А до данной прямой равно 4,8.

Лекция 8.

Наши рекомендации