Задание 3
1. | При каких размерах коробка (без крышки), изготовленная из квадратного листа картона, со стороной a, имеет наибольшую вместимость? |
2. | Среди всех прямоугольников, имеющих данный периметр 2a, найти тот, площадь которого наибольшая. |
3. | Кусок проволоки данной длины согнуть в виде прямоугольника так, чтобы площадь последнего была наибольшей. |
4. | Число 50 записать в виде суммы двух чисел, сумма кубов которых наименьшая. |
5. | Записать число 625 в виде произведения двух положительных чисел так, чтобы сумма их квадратов была наименьшая. |
6. | Из всех прямоугольников, площадь которых равна 9 см2, найти прямоугольник с наименьшим периметром. |
7. | Из всех прямоугольных параллелепипедов, у которых в основании лежит квадрат и площадь полной поверхности равна 600 см2, найти параллелепипед наибольшего объема. |
8. | Из всех прямоугольников с периметром Pнайти прямоугольник с наименьшей диагональю. |
9. | Из всех равнобедренных треугольников с периметром P найти треугольник с наибольшей площадью. |
10. | Из всех прямоугольных треугольников, у которых сумма одного катета и гипотенузы равна , найти треугольник с наибольшей площадью. |
11. | Найти размеры открытого сверху цилиндрического бака данного объема 64 л, при которых на его изготовление пойдет минимальное количество жести. |
12. | Окно магазина имеет форму прямоугольника, заканчивающегося полукругом. Периметр фигуры равен 15 м. При каком размере полукруга окно будет пропускать наибольшее количество света? |
13. | Образующая конического сосуда равна 25 см. Какой должна быть его высота, чтобы вместимость сосуда была наибольшей. |
14. | Определить наибольшую площадь прямоугольника, вписанного в круг радиусом r. |
15. | Решеткой длиной 120 м нужно огородить площадку наибольшей площади. Найти размеры этой площадки. |
16. | Разложить число 10 на два слагаемых так, чтобы произведение их было наибольшим. |
17. | При каких размерах коробка (без крышки), изготовленная из квадратного листа картона, со стороной a, имеет наибольшую вместимость? |
18. | Среди всех прямоугольников, имеющих данный периметр 2a, найти тот, площадь которого наибольшая. |
19. | Кусок проволоки данной длины согнуть в виде прямоугольника так, чтобы площадь последнего была наибольшей. |
20. | Число 50 записать в виде суммы двух чисел, сумма кубов которых наименьшая. |
21. | Записать число 625 в виде произведения двух положительных чисел так, чтобы сумма их квадратов была наименьшая. |
22. | Из всех прямоугольников, площадь которых равна 9 см2, найти прямоугольник с наименьшим периметром. |
23. | Из всех прямоугольных параллелепипедов, у которых в основании лежит квадрат и площадь полной поверхности равна 600 см2, найти параллелепипед наибольшего объема. |
24. | Из всех прямоугольников с периметром Pнайти прямоугольник с наименьшей диагональю. |
25. | Из всех равнобедренных треугольников с периметром P найти треугольник с наибольшей площадью. |
26. | Из всех прямоугольных треугольников, у которых сумма одного катета и гипотенузы равна , найти треугольник с наибольшей площадью. |
27. | Найти размеры открытого сверху цилиндрического бака данного объема 64 л, при которых на его изготовление пойдет минимальное количество жести. |
28. | Окно магазина имеет форму прямоугольника, заканчивающегося полукругом. Периметр фигуры равен 15 м. При каком размере полукруга окно будет пропускать наибольшее количество света? |
29. | Образующая конического сосуда равна 25 см. Какой должна быть его высота, чтобы вместимость сосуда была наибольшей. |
30. | Определить наибольшую площадь прямоугольника, вписанного в круг радиусом r. |
ЗАДАНИЕ 4. Найти точки перегиба функции:
1. | 2. | 3. |
4. | 5. | 6. |
7. | 8. | 9. |
10. | 11. | 12. |
13. | 14. | 15. |
16. | ||
17. | 18. | 19. |
20. | 21. | 22. |
23. | 24. | 25. |
26. | 27. | 28. |
29. | 30. |
ЗАДАНИЕ 5. Найти асимптоты графика функции:
1. | 2. | 3. |
4. | 5. | 6. |
7. | 8. | 9. |
10. | 11. | 12. |
13. | 14. | 15. |
16. | ||
17. | 18. | 19. |
20. | 21. | 22. |
23. | 24. | 25. |
26. | 27. | 28. |
29. | 30. |
ЗАДАНИЕ 6. Исследовать функцию и построить ее график:
1. | 2. | 3. | 4. |
5. | 6. | 7. | 8. |
9. | 10. | 11. | 12. |
13. | 14. | 15. | 16. |
17. | 18. | 19. | 20. |
21. | 22. | 23. | 24. |
25. | 26. | 27. | 28. |
29. | 30. |
Образец выполнения контрольной работы
“Приложение ПРОИЗВОДНОЙ”
1) Исследовать на экстремум функцию .
Решение. Найдем точки, подозрительные на экстремум. Для этого возьмем производную и приравняем ее нулю.
при .
|
Рисунок 1
На тех интервалах, где , функция убывает; где , функция возрастает. Поэтому интервалы возрастания функции и , интервалы убывания функции: и .
По рисунку 1 видно, что в точках и функция принимает свои минимальные значения, а при – максимальное. Найдем эти значения:
Ответ: .
2) Найти наибольшее и наименьшее значения функции на отрезке .
Решение.Так как свои наименьшее и наибольшее значения непрерывная на отрезке функция может принимать либо на концах этого отрезка, либо в точках экстремума, входящих в этот отрезок, то находим значения исследуемой функции во всех этих точках и среди них выбираем наибольшее и наименьшее значения:
при ,
,
Найдем значение функции только при . Так как , то
.
Выбираем наибольшее значение функции из найденных трех чисел – это 10. Теперь наименьшее – это 3.
Ответ:
3) Найти точки перегиба функции .
Решение.Так как точками перегиба являются те точки из области допустимых значений, где вторая производная меняет знак, сначала найдем , затем и приравняем к нулю:
при , т. к. для всех .
|
|
4) Найти асимптоты графика .
Так как вертикальную асимптоту имеет функция с разрывом 2-го рода в точке , сначала найдем точки разрыва и исследуем поведение функции в их окрестностях.
О.Д.З.
Значит, – точка разрыва, так как функция в этой точке не определена. Найдем предел слева и предел справа функции при подходе к точке . Выясним, разрыв какого рода терпит данная функция в этой точке.
. Предел слева равен .
. Предел слева равен .
Так как односторонние пределы бесконечны, то в точке разрыв 2-го рода, поэтому уравнением вертикальной асимптоты будет .
Функция также может иметь или не иметь наклонные асимптоты. Если они есть, то их уравнение запишем в виде ,
где .
Найдем правую наклонную асимптоту при .
Применяем правило Лопиталя:
Применяем правило Лопиталя:
|
-2
-2 -1 1 х
-2 -
Рисунок 3
5) Исследовать функцию и построить ее график.
Исследование функции будем проводить по плану.
1. Найдем О.Д.З. и, если есть асимптоты О.Д.З. , – любое. Следовательно, нет точек разрыва, поэтому вертикальных асимптот нет.
2. Найдем точки пересечения графика функции с осями координат, исследуем функцию на четность, тригонометрические функции – на периодичность. Пусть , тогда . Проверим четность функции:
.
Значит, данная функция нечетная, и ее график симметричен относительно начала координат.
3. Исследуем монотонность функции с помощью .
.
|
|
+ +
0 х
Рисунок 4
4. С помощью находим точки перегиба.
при и .
Все точки, в которых , являются точками перегиба, так как в них меняет знак на противоположный (рис. 5).
Найдем значения функции в этих точках:
.
5. Найдем наклонные асимптоты, если они есть: .
Сначала , тогда
По правилу Лопиталя:
Теперь найдем
Получаем – уравнение правой асимптоты. Повторяя прежние рассуждения уже при , получим уравнение левой асимптоты: .
6. Строим график функции, начертив сначала все асимптоты, отметив точки экстремума, точки перегиба и точки пересечения с осями координат (рис. 6).