Проверка статистических гипотез
Ни одно исследование не обходится без сравнений. Сравнивать приходится данные опыта с контролем, эффективность действия препаратов, продуктивность одной группы животных с продуктивностью другой и т.д.
Обычно, между сравниваемыми данными всегда имеются различия. Иногда различиями пренебрегают и утверждают, что, в целом, данные контрольной группы совпадают с данными опытной группы, другими словами различия между полученными данными недостоверны. В другом случае различиями пренебречь нельзя и в таком случае говорят, что различия между полученными данными достоверны. В каком случае делается тот или иной вывод?
Введём несколько основных понятий:
1. - нулевая гипотеза, которая предполагает, что полученная в опыте разница между исследуемыми параметрами случайна;
2. - альтернативная гипотеза, которая противоречит нулевой и предполагает, что полученная в опыте разница между исследуемыми параметрами не случайна;
3. a- уровень значимости, равен вероятности ошибки, допускаемой при оценке принятой гипотезы (обычно равен0,05; 0,01; 0,001).
Принять или отклонить гипотезу можно после её проверки. Для этих целей служит величина, называемая статистическим критерием или просто критерием.
Критерии, которые вычисляются по исходным данным (выборкам) tф (фактические критерии) с р а в н и в а ю т с я с табличными критериямиtкр.
ОСНОВНОЙ ПРИНЦИП проверки статистических гипотез сводится к следующему:
если фактически установленная величина kф превзойдёт или окажется равной критическому значению kкр, kф ³ kкр, то нулевую гипотезу отвергают. Если kф < kкр, принимают нулевую гипотезу. |