Векторы и действия над ними
В геометрии под вектором (в узком смысле слова) понимается всякий направленный отрезок. Вектор с началом в точке A и концом в точке B принято обозначать символом . Часто векторы обозначают одной буквой, например,
. Векторы называются коллинеарными, если они лежат на одной прямой или на параллельных прямых. Векторы называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях. К линейным операциям над векторами относят операции сложения и вычитания векторов, а также умножение вектора на число.
Пример 2.1. По двум заданным векторам ![]() ![]() ![]() ![]() ![]() ![]() |
|
Решение. Чтобы сложить векторы, нужно совместить параллельным переносом начало и конец этих векторов. Тогда суммой этих векторов будет вектор, соединяющий начало первого и конец второго вектора (правило треугольника). Векторы можно сложить также по правилу параллелограмма, совместив начала этих векторов. Суммой векторов, в этом случае, будет диагональ параллелограмма, выходящая из начала векторов.
Разностью двух векторов
и
называется сумма
, т.е. чтобы вычесть из вектора
вектор
, достаточно прибавить к вектору
вектор (–
). Отметим, что если на векторах
и
построить параллелограмм, то одна его диагональ равна сумме
, а вторая – разности
.
|
|
| |||||||||
![]() | ![]() |
Система векторов ,
, ... ,
называется линейно зависимой, если найдется хотя бы одно не равное нулю число k1, k2 , ... , kn, чтобы выполнялось равенство
. Если данное равенство может выполняться только при условии, что все числа k1, k2 , ... , kn равны нулю, то такая система векторов называется линейно независимой. В частности, любые два коллинеарных вектора линейно зависимы; любые три компланарных вектора линейно зависимы; любые четыре 3-х мерных вектора линейно зависимы.
Линейно-независимые векторы образуют базис для какого-либо множества векторов, если любой вектор из этого множества может быть представлен в виде некоторой линейной комбинации исходных векторов.
Пусть какая-нибудь тройка векторов образует базис в пространстве. Тогда любой вектор пространства можно разложить и притом единственным образом по этому базису:
. (2.1)
Числа a1, a2, a3 называются координатами вектора в базисе векторов
, что обозначается
. Значение координат состоит в том, что операции над векторами можно сводить к действиям над числами. Тогда при сложении векторов будут складываться их соответствующие координаты, при умножении вектора на число все его координаты умножаются на это число и т.д.
Два ненулевых вектора и
коллинеарны тогда и только тогда, когда выполняется равенство
. Если векторы заданы в координатной форме, то условие коллинеарности будет иметь вид
(2.2)
Пример 2.2. Коллинеарны ли векторы и
, если
и
.
Решение. Найдем координаты векторов и
:
,
.
Из условия пропорциональности
.
заключаем, что векторы и
коллинеарны, причем
.
Пример 2.3. Показать, что векторы образуют базис. Найти разложение вектора
по этому базису, если
,
,
,
Решение. Векторы образуют базис, если определитель, составленный из координат этих векторов (смешанное произведение векторов) не равен нулю. Поскольку
,
то векторы образуют базис. Следовательно, вектор
можно разложить по этому базису:
.
Найдем числа a, b, g. Для этого векторное уравнение распишем по координатам:
,
или
.
Два вектора равны, если равны их соответствующие координаты. Отсюда получаем систему уравнений:
Таким образом, искомое разложение имеет вид
.
Ортонормированный базис – это базис, состоящий из единичных (нормированных) и взаимно перпендикулярных (ортогональных) векторов. В этом случае базисные вектора имеют особые обозначения: . Координаты вектора в таком базисе обычно обозначаются буквами x, y, z:
. Длина вектора в ортонормированном базисе равна
(2.3)