| | Определить, какие из точек M1(3; 1), M2(2; 3), M3(6; 3), M4(-3; -3), M5(3; -1), M6(-2; 1) лежат на прямой и какие на ней не лежат. |
| | Точки P1, P2, P3, P4, P5 расположены на прямой ; их абсциссы соответственно равны числам 4; 0; 2; -2; -6. Определить ординаты этих точек. |
| | Точки Q1, Q2, Q3, Q4, Q5 расположены на прямой ; их ординаты соответственно равны числам 1; 0; 2; -1, 3. Определить абсциссы этих точек. |
| | Определить точки пересечения прямой с координатными осями и построить эту прямую на чертеже. |
| | Найти точку пересечения двух прямых , . |
| | Стороны АВ, ВС и АС треугольника АВС даны соответственно уравнениями , , . Определить координаты его вершин. |
| | Даны уравнения двух сторон параллелограмма , и уравнение одной из его диагоналей . Определить координаты вершин этого параллелограмма. |
| | Стороны треугольника лежат на прямых , , . Вычислить его площадь S. |
| | Площадь треугольника S=8, две его вершины суть точки А(1; -2), В(2; 3), а третья вершина С лежит на прямой . Определить координаты вершины С. |
| | Площадь треугольника S=1,5, две его вершины суть точки А(2; -3), В(3; -2), центр масс этого треугольника лежит на прямой . Определить координаты третьей вершины С. |
| | Составить уравнение прямой и построить прямую на чертеже, зная ее угловой коэффициент k и отрезок b, отсекаемый ею на оси Oy: |
| 220.1 | k=2/3, b=3; |
| 220.2 | k=3, b=0; |
| 220.3 | k=0, b=-2; |
| 220.4 | k=-3/4, b=3; |
| 220.5 | k=-2, b=-5; |
| 220.6 | k=-1/3, b=2/3. |
| | Определить угловой коэффициент k и отрезок b, отсекаемый на оси Oy, для каждой из прямых: |
| 221.1 | ; |
| 221.2 | ; |
| 221.3 | ; |
| 221.4 | ; |
| 221.5 | . |
| | Дана прямая . Определить угловой коэффициент k прямой: |
| 222.1 | Параллельной данной прямой; |
| 222.2 | Перпендикулярно к данной прямой. |
| | Дана прямая . Составить уравнение прямой, проходящей через точку М0(2; 1): |
| 223.1 | Параллельно данной прямой; |
| 223.2 | Перпендикулярно данной прямой. |
| | Даны уравнения двух сторон прямоугольника , и одна из его вершин А(2; -3). Составить уравнения двух других сторон этого прямоугольника. |
| | Даны уравнения двух сторон прямоугольника , и уравнение одной из его диагоналей . Найти вершины прямоугольника. |
| | Найти проекцию точке Р(-5; 13) относительно прямой . |
| | Найти точку Q, симметричную точке Р(-5; 13) относительно прямой . |
| | В каждом из следующих случаев составить уравнение прямой, параллельной двум данным прямым и проходящей посередине между ними: |
| 228.1 | , ; |
| 228.2 | , ; |
| 228.3 | , ; |
| 228.4 | , ; |
| 228.5 | , . |
| | Вычислить угловой коэффициент k прямой, проходящей через две данные точки: |
| 229.1 | M1(2; -5), M2(3; 2); |
| 229.2 | P(-3, 1), Q(7; 8); |
| 229.3 | A(5; -3), B(-1; 6). |
| | Составить уравнения прямых, проходящих через вершины треугольника A(5; -4), B(-1; 3), C(-3; -2) параллельно противоположным сторонам. |
| | Даны середины сторон треугольника M1(2; 1), M2(5; 3), M3(3; -4). Составить уравнение его сторон. |
| | Даны две точки P(2; 3), Q(-1; 0). Составить уравнение прямой, проходящей через точку Q перпендикулярно к отрезку . |
| | Составить уравнение прямой, если точка P(2; 3) служит основанием перпендикуляра, опущенного из начала координат на эту прямую. |
| | Даны вершины треугольника M1(2; 1), M2(-1; -1), M3(3; 2). Составить уравнения его высот. |
| | Стороны треугольника даны уравнениями , , . Определить точку пересечения его высот. |
| | Даны вершины треугольника A(1; -1), B(-2; 1), C(3; 5). Составить уравнение перпендикуляра, опущенного из вершины А на медиану, проведенную из вершины В. |
| | Даны вершины треугольника A(2; -2), B(3; -5), C(5; 7). Составить уравнение перпендикуляра, опущенного из вершины С на биссектрису внутреннего угла при вершине А. |
| | Составить уравнения сторон и медиан треугольника с вершинами A(3; 2), B(5; -2), C(1; 0). |
| | Через точки M1(-1; 2), M2(2; 3) проведена прямая. Определить точки пересечения этой прямой с осями координат. |
| | Доказать, что условие, при котором три точки M1(x1, y1), M2(x2, y2), M3(x3, y3) лежат на одной прямой, может быть записано в следующем виде: |
| | Доказать, что уравнение прямой, проходящей через две данные точки M1(x1, y1), M2(x2, y2), может быть записано в следующем виде: |
| | Даны последовательные вершины выпуклого четырехугольника A(-3; 1), B(3; 9), C(7; 6), D(-2; -6). Определить точку пересечения его диагоналей. |
| | Даны две смежные вершины A(-3; -1), B(2; 2) параллелограмма ABCD и точка Q(3; 0) пересечения его диагоналей. Составить уравнения сторон этого параллелограмма. |
| | Даны уравнения двух сторон прямоугольника , и уравнение его диагонали . Составить уравнения остальных сторон и второй диагонали этого прямоугольника. |
| | Даны вершины треугольника A(1; -2), B(5; 4), C(-2; 0). Составить уравнения биссектрис его внутреннего и внешнего углов при вершине А. |
| | Составить уравнение прямой, проходящей через точку P(3; 5) на одинаковых расстояниях от точек A(-7; 3) и B(11; -15). |
| | Найти проекцию точки P(-8; 12) на прямую, проходящую через точки A(2; -3), B(-5; 1). |
| | Найти точку M1, симметричную точке М2(8; -9) относительно прямой, проходящей через точки А(3; -4), B(-1; -2). |
| | На оси абсцисс найти такую точку P, чтобы сумма ее расстояний до точек M(1; 2), N(3; 4) была наименьшей. |
| | На оси ординат найти такую точку P, чтобы сумма ее расстояний до точек M(-3; 2), N(2; 5) была наибольшей. |
| | На прямой найти такую точку Р, сумма расстояний которой до точек A(-7; 1), B(-5; 5) была бы наименьшей. |
| | На прямой найти такую точку Р, разность расстояний которой до точек A(4; 1), B(0; 4) была бы наибольшей. |
| | Определить угол между двумя прямыми: |
| 253.1 | , ; |
| 253.2 | , ; |
| 253.3 | , ; |
| 253.4 | , . |
| | Дана прямая . Составить уравнение прямой, проходящей через точку M0(2; 1) под углом 450 к данной прямой. |
| | Точка А(-4; 5) является вершиной квадрата, диагональ которого лежит на прямой . Составить уравнения сторон и второй диагонали этого квадрата. |
| | Даны две противоположные вершины квадрата A(-1; 3), C(6; 2). Составить уравнения его сторон. |
| | Точка E(1; -1) является центром квадрата, одна из сторон которого лежит на прямой . Составить уравнения прямых, на которых лежат остальные стороны этого квадрата. |
| | Из точки M0(-2; 3) под углом к оси Ox направлен луч света. Известно, что . Дойдя до оси Ox, луч от нее отразился. Составить уравнения прямых, на которых лежат падающий и отраженный лучи. |
| | Луч света направлен по прямой , луч от нее отразился. Составить уравнение прямой, на которой лежит отраженный луч. |
| | Даны уравнения сторон треугольника , , . Доказать, что этот треугольник равнобедренный. Решить задачу при помощи сравнения углов треугольника. |
| | Доказатть, что уравнение прямой, проходящей через точку M1(x1; y1) параллельно прямой , может быть записано в виде . |
| | Составить уравнение прямой, проходящей через точку М1(2: -3) параллельно прямой: |
| 262.1 | ; |
| 262.2 | ; |
| 262.3 | ; |
| 262.4 | ; |
| 262.5 | . |
| | Доказать, что условие перпендикулярности прямых ; может быть записано в следующем виде: . |
| | Установить, какие из следующих пар прямых перпендикулярны. Решить задачу, не вычисляя угловых коэффициентов данных прямых. |
| 264.1 | , ; |
| 264.2 | , ; |
| 264.3 | , ; |
| 264.4 | , ; |
| 264.5 | , ; |
| 264.6 | , . |
| | Доказать, что формула для определения угла между прямыми , может быть записана в следующей форме: |
| | Определить угол , образованный двумя прямыми. Решить задачу, не вычисляя угловых коэффициентов данных прямых. |
| 266.1 | , ; |
| 266.2 | , ; |
| 266.3 | , . |
| | Даны две вершины треугольника M1(-10; 2), M2(6; 4); его высоты пересекаются в точке N(5; 2). Определить координаты третьей вершины M3. |
| | Даны две вершины A(3; -1), B(5; 7) треугольника ABC и точка N(4; -1) пересечения его высот. Составить уравнения сторон этого треугольника. |
| | В треугольнике АВС даны: уравнение стороны АВ: , уравнения высот АМ: и BN: . Составить уравнения двух других сторон и третьей высоты этого треугольника. |
| | Составить уравнения сторон треугольника АВС, если даны одна из его вершина А(1; 3) и уравнения двух медиан , . |
| | Составить уравнения сторон треугольника, сли даны одна из его вершин B(-4; -5) и уравнения двух высот , . |
| | Составить уравнения сторон треугольника, зная одну из его вершин A(4; -1) и уравнения двух биссектрис , . |
| | Составить уравнения сторон треугольника, зная одну из его вершин B(2; 6), а также уравнения высоты и биссектрисы , проведенных из одной вершины. |
| | Составить уравнения сторон треугольника, зная одну его вершину B(2; -1), а также уравнения высоты и биссектрисы , проведенных из различных вершин. |
| | Составить уравнения сторон треугольника, зная одну его вершину C(4; -1), а также уравнения высоты и медианы , проведенной из одной вершины. |
| | Составить уравнения сторон треугольника, зная одну его вершину B(2; -7), а также уравнения высоты и медианы , проведенных из различных вершин. |
| | Составить уравнения сторон треугольника, зная одну его вершину C(4; 3), а также уравнения биссектрисы и медианы , проведенных из одной вершины. |
| | Составить уравнения сторон треугольника, зная одну его вершину A(3; -1), а также уравнения биссектрисы и медианы , проведенных из различных вершин. |
| | Составить уравнение прямой, которая проходит черезначало координат и вместе с прямыми , образует треугольник с площадью, равной 1,5. |
| | Среди прямых, проходящих через точку P(3; 0), найти такую, отрезок которой, заключенный между прямыми , , делится в точке Р пополам. |
| | Через точку Р(-3; -1) проведены всевозможные прямые. Доказать, что отрезок каждой из них, заключенный между прямыми , , делится в точке Р пополам. |
| | Через точку Р(0; 1) проведены всевозможные прямые. Доказать, что среди них нет прямой, отрезок которой, заключенный между прямыми , , делился бы в точке Р пополам. |
| | Составить уравнение прямой, проходящей через начало координат, зная, что длина ее отрезка, заключенного между прямыми , , равна . |
| | Составить уравнение прямой, проходящей через точку С(-5; 4), зная, что длина ее отрезка, заключенного между прямыми , , равна 5. |
Глава 13. Неполные уравнения прямой. Совместное исследование уравнений двух и трех прямых. Уравнение прямой "в отрезках"
| | Определить, при каком значении a прямая : |
| 285.1 | Параллельна оси абсцисс; |
| 285.2 | Параллельна оси ординат; |
| 285.3 | Проходит через начало координат. |
| | Определить, при каких значениях m и n прямая параллельна оси абсцисс и отсекает на оси ординат отрезок, равный –3 (считая от начала координат). Написать уравнение этой прямой. |
| | Определить, при каких значениях m и n прямая параллельна оси ординат и отсекает на оси абсцис отрезок, равный +5 (считая от начала координат). Написать уравнение этой прямой. |
| | Доказать, что в следующих случаях две данные прямые пересекаются, и найти точку их пересечения: |
| 288.1 | , ; |
| 288.2 | , ; |
| 288.3 | , ; |
| 288.4 | , ; |
| 288.5 | , . |
| | Доказать, что в следующих случаях две данные прямые параллельны: |
| 289.1 | , ; |
| 289.2 | , ; |
| 289.3 | , ; |
| 289.4 | , . |
| | Доказать, что в следующих случаях две данные прямые параллельны: |
| 290.1 | , ; |
| 290.2 | , ; |
| 290.3 | , . |
| | Определить, при каких значениях a и b две прямые , : |
| 291.1 | Имеют одну общую точку; |
| 291.2 | Параллельны; |
| 291.3 | Совпадают |
| | Определить, при каких значениях m и n две прямые , : |
| 292.1 | Параллельны; |
| 292.2 | Совпадают; |
| 292.3 | Перпендикулярны. |
| | Определить, при каком значении m две прямые , пересекаются в одной точке, лежащей на оси абсцисс. |
| | Определить, при каком значении m две прямые , пересекаются в точке, лежающей на оси ординат. |
| | Установить, пересекаются ли в одной точке три прямые в следующих случаях: |
| 295.1 | , , ; |
| 295.2 | , , ; |
| 295.3 | , , . |
| | Доказать, что если три прямые , , пересекаются в одной точке, то . |
| | Доказать, что если , то три прямые , , пересекаются в одной точке или параллельны. |
| | Определить, при каком значении а три прямые , , будут пересекаться в одной точке. |
| | Даны прямые. Составить для них уравнения «в отрезках» и построить эти прямые на чертеже. |
| 299.1 | ; |
| 299.2 | ; |
| 299.3 | ; |
| 299.4 | ; |
| 299.5 | . |
| | Вычислить площадь треугольника, отсекаемого прямой от координатного угла. |
| | Составить уравнение прямой, которая проходит через точку M1(3; -7) и отсекает на коордиатных осях отличные от нуля отрезки одинаковой величины (считая каждый отрезок направленным от начала координат). |
| | Составить уравнение прямой, которая проходит через точку P(2; 3) и отсекает на координатных осях отрезки равной длины, считая каждый отрезок от начала координат. |
| | Составить уравнение прямой, которая проходит через точку С(1; 1) и отсекает от координатного угла треугольник с площадью, равно 2. |
| | Составить уравнение прямой, которая проходит через точку В(5; -5) и отсекает от координатного угла треугольник с площадью, равной 50. |
| | Составить уравнение прямой, которая проходит через точку Р(8; 6) и отсекает от координатного угла треугольник с площадью, равной 12. |
| | Составить уравнение прямой, которая проходит через точку Р(12; 6) и отсекает от координатного угла треугольник с площадью, равной 15. |
| | Через точку М(4; 3) проведена прямая, отсекающая от координатного угла треугольник, площадь которого равна 3. Определить точки пересечения той прямой с осями координат. |
| | Через точку M1(x1, y1), где x1y1>0, проведена прямая , отсекающая от координатного угла треугольник, площадь которого равна S. Определить, при каком соотношении между величинами x1, y1 и S отрезки a и b будут иметь одинаковые знаки. |