Методы сглаживания временного ряда

Методы «механического» сглаживания

Метод усреднения по двум половинам ряда, когда ряд делится на две части. Затем, рассчитываются два значения средних уровней ряда, по которым графически определяется тенденция ряда. Очевидно, что такой тренд не достаточно полно отражает основную закономерность развития явления.

Метод укрупнения интервалов, при котором производится увеличение протяженности временных промежутков, и рассчитываются новые значения уровней ряда.

Метод скользящей средней. Данный метод применяется для характеристики тенденции развития исследуемой статистической совокупности и основан на расчете средних уровней ряда за определенный период.

Метод экспоненциальной средней. Экспоненциальная средняя – это адаптивная скользящая средняя, рассчитанная с применением весов, зависящих от степени «удаленности» отдельных уровней ряда от среднего значения. Величина веса убывает по мере удаления уровня по хронологической прямой от среднего значения в соответствии с экспоненциальной функцией, поэтому такая средняя называется экспоненциальной. На практике применяется многократное экспоненциальное сглаживания ряда динамики, которое используется для прогнозирования развития явления.

Способы, включенные в первую группу, ввиду применяемых методик расчета предоставляют исследователю очень упрощенное, неточное, представление о тенденции в ряду динамики. Однако корректное применение этих способов требует от исследователя глубины знаний о динамике различных социально - экономических явлений.

Методы «аналитического» выравнивания

Более точным способом отображения тенденции динамического ряда является аналитическое выравнивание, т. е. выравнивание с помощью аналитических формул. В этом случае динамический ряд выражается в виде функции у (t), в которой в качестве основного фактора принимается время t, и изменения аргумента функции определяют расчетные значения уt.

Чаще всего при выравнивании используются следующий зависимости:
линейная Методы сглаживания временного ряда - student2.ru ;

параболическая Методы сглаживания временного ряда - student2.ru ;
экспоненциальная Методы сглаживания временного ряда - student2.ru или Методы сглаживания временного ряда - student2.ru ).

Модели временных рядов

Модели, построенные по данным, характеризующим один объект за ряд последовательных моментов (периодов), называются моделями временных рядов. Временной ряд - это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов.

Каждый уровень временного ряда формируется из трендовой (T), циклической (S) и случайной (Е) компонент.

Модели, в которых временной ряд представлен как сумма перечисленных компонент, - аддитивные модели Y = Т + S + Е, как произведение - мультипликативные модели временного ряда: Y=T* S • Е, где Т- тренд, S- сезонная составляющая, Е – случайная составляющая

Модели временных рядов

• тренда: y(t) = T(t) +ξt

где t – время; T(t) - временной тренд заданного параметрического вида (например, линейный T(t) = a + bt); ξt - случайная (стохастическая) компонента;

• сезонности: y(t) = S(t) + ξt

где S(t) - периодическая (сезонная) компонента, ξt - случайная (стохастическая) компонента.

• тренда и сезонности: y(t) = T(t) + S(t) + ξt (аддитивная) или y(t) = T(t)S{t) + ξt (мультипликативная), Методы сглаживания временного ряда - student2.ru где T(t) - временной тренд заданного параметрического вида; S(t) - периодическая (сезонная) компонента; ξt - случайная (стохастическая) компонента.

Кроме того, существуют модели временных рядов, в которых присутствует циклическая компонента, формирующая изменения анализируемого признака, обусловленные действием долговременных циклов экономической де­мографической или астрофизической природы (волны Кондратьева, циклы солнечной активности и т.д.).


Наши рекомендации