Сокращенная форма силлогизма. Восстановление недостающих посылок.
В процессе рассуждения мы не всегда употребляем силлогизмы в полном, развёрнутом виде. Иногда формулируются только большая посылка и заключение силлогизма, а меньшая посылка лишь подразумевается. В других случаях явно не выражена большая посылка и формулируются лишь меньшая посылка и заключение. Нередко бывает и так, что даются лишь посылки, вывод из которых предоставляется сделать самому собеседнику или читателю. При этом подразумевается, что вывод возможен по правилам силлогизма.
Силлогизм, в котором выпущена (не выражена явно) какая-нибудь из его частей (посылка или заключение), называется сокращённым силлогизмом или энтимемой.
Сокращёнными (энтимематическими) могут быть и умозаключения логики суждений. Там также могут быть пропущены посылки или заключение. Поэтому возможно и более общее определение энтимемы:
Энтимема – это умозаключение, в котором пропущена одна из посылок или заключение.
Смысл этого названия (от греч. ẻν θυμφ – в уме) заключается в том, что какая-то часть силлогизма не выражается явно, а произносится как бы в уме.
Возможность сокращённого выражения умозаключений обусловлена тем, что если даны две какие-то части силлогизма, то всегда возможно логическим способом точно установить пропущенную часть.
В дискуссиях и спорах, когда собеседник выражает свою мысль в виде сокращённого силлогизма, необходимо всегда точно осознавать, какое именно суждение не выражено, а только подразумевается в данном рассуждении. Иначе невозможно полностью понять это рассуждение и опровергнуть, если оно неправильно. Нередко люди исходят в своих рассуждениях из ложных или сомнительных положений, но не выражают их явно, пользуясь сокращенными формами умозаключений. Чтобы найти ошибку в таком рассуждении и опровергнуть его, надо установить то, что в нём предполагается, но не выражается явно.
В простых случаях подразумеваемые в рассуждении посылки или заключение можно установить, не прибегая к специальным приёмам, – по общему смыслу рассуждения. Но во многих случаях восстановить недостающую часть силлогизма по общему смыслу не так просто. Однако это можно сделать, выполняя операцию восстановления силлогизма до полной формы, которая состоит из нескольких этапов:
1) определение пропущенного элемента силлогизма (посылки или заключения). Если в энтимеме встречаются выражения, обозначающие логическую связь («следовательно», «потому что», «так как» и т.п.), это означает, что в энтимеме имеется заключение. Если же этих слов нет, то, скорее всего, пропущено заключение;
2) определение терминов силлогизма (меньшего, большего и среднего);
3) определение вида пропущенной посылки (если пропущена именно посылка) – большая или меньшая;
4) определение фигуры и модуса силлогизма;
5) формулировка силлогизма в полной форме.
Трудности восстановления силлогизмов по энтимеме могут быть связаны с тем, что для правильного определения понятий (терминов), из которых будет формулироваться пропущенный элемент (посылка или заключение), обязательно нужно знать логические формы имеющихся элементов (двух посылок или посылки и заключения). Однако в реальных рассуждениях стандартные логические формы категорических суждений (из которых и состоят силлогизмы) используются далеко не всегда. Прежде чем приводить суждения к стандартной форме, нужно разобраться в их смысле, что может оказаться непростым делом.
Пример. Восстановим силлогизм из энтимемы «Данный силлогизм имеет три термина, и поэтому он правильный».
В этой энтимеме есть слово, обозначающее логическую связь («поэтому»), значит, в ней есть заключение. Заключением является суждение, следующее за словом «поэтому»: «Он правильный». Оставшееся суждение – «Данный силлогизм имеет три термина» – одна из посылок. Нужно восстановить вторую, недостающую посылку.
Определяем субъект и предикат заключения, формулируя его в логической форме и учитывая, что в нем идет речь о «данном силлогизме» и под местоимением «он» подразумевается «данный силлогизм»:
Данный силлогизм (S) есть правильный силлогизм (Р).
Имеющаяся в энтимеме посылка содержит субъект заключения или меньший термин («данный силлогизм»), т.е. является меньшей посылкой. А так как любая посылка всегда содержит один из крайних терминов и средний термин, следовательно, второй термин посылки («силлогизм, имеющий три термина») – это средний термин силлогизма (М):
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Данный силлогизм (S) есть силлогизм, имеющий три термина (М).
Данный силлогизм (S) есть правильный силлогизм (Р).
Восстанавливаем большую посылку. Большая посылка всегда содержит больший термин (Р) и средний термин (М). Однако они могут располагаться в разной последовательности: Р-М либо М-Р. Чтобы определить последовательность терминов, а также вид посылки (общеутвердительная, общеотрицательная, частноутвердительная или частноотрицательная), определяем фигуру и модус силлогизма. При этом учитываем, что восстановленный силлогизм должен быть правильным.
В меньшей посылке термины расположены в порядке S-М. Такое расположение терминов в меньшей посылке возможно либо в первой, либо во второй фигуре (в третьей и четвертой термины расположены в обратном порядке – М-S). Значит, силлогизм будет иметь либо первую, либо вторую фигуру.
Теперь находим модус силлогизма. Так как меньшая посылка и заключение - общеутвердительные суждения (А), модус будет оканчиваться на …АА. Смотрим, для какой из предварительно выбранных фигур (первой или второй) имеется правильный модус, оканчивающийся на …АА. Такой модус есть в первой фигуре, и это модус ААА.
Искомая большая посылка является общеутвердительным суждением (А), а термины в ней должны следовать в порядке М-Р, так как именно таким образом они расположены в большей посылке в первой фигуре. Получаем следующий силлогизм:
Все силлогизмы, имеющие три термина (М), есть правильные силлогизмы (Р).
Данный силлогизм (S) есть силлогизм, имеющий три термина (М).
Данный силлогизм (S) есть правильный силлогизм (Р).
Полученная посылка не является истинным суждением, потому что количество терминов, как нам уже известно, - не единственное условие правильности силлогизма. Следовательно, и заключение энтимемы о правильности «данного силлогизма» оказывается необоснованным.