Анализ надежности систем при множественных отказах

Рассмотрим метод анализа надежности нагруженных элементов в случае статистически независимых и зависимых (множественных) отказов. Следует заметить, что этот метод может быть применен и в случае других моделей и распределений вероятностей. При разработке этого метода предполагается, что для каждого элемента системы существует некоторая вероятность появления множественных отказов.

Как известно, множественные отказы действительно существуют, и для их учета в соответствующие формулы вводится параметр a. Этот параметр может быть определен на основе опыта эксплуатации резервированных систем или оборудования и представляет собой долю отказов, вызываемых общей причиной. Другими словами, параметр а можно рассматривать как точечную оценку вероятности того, что отказ некоторого элемента относится к числу множественных отказов. При этом можно считать, что интенсивность отказов элемента имеет две взаимоисключающие составляющие, т. е. l=l1+l2, где l1 - постоянная интенсивность статистически независимых отказов элемента, l2 - интенсивность множественных отказов резервированной системы или элемента. Поскольку a=l2/l, то l2= a/ l, и следовательно, l1 =(1- a)l.

Приведем формулы и зависимости для вероятности безотказной работы, интенсивности отказов и средней наработки на отказ в случае систем с параллельным и последовательным соединением элементов, а также систем с k исправными элементами из п и систем, элементы которых соединены по мостиковой схеме.

Система с параллельным соединением элементов (рис. 4.5.13) - обычная параллельная схема, к которой последовательно подсоединен один элемент. Параллельная часть (I) схемы отображает независимые отказы в любой системе из n элементов, а последовательно соединенный элемент (II) - все множественные отказы системы.

Анализ надежности систем при множественных отказах - student2.ru

Рис. 4.5.13. Модифицированная система с параллельным соединением одинаковых элементов

Гипотетический элемент, характеризуемый определенной вероятностью появления множественного отказа, последовательно соединен с элементами, которые характеризуются независимыми отказами. Отказ гипотетического последовательно соединенного элемента (т.е. множественный отказ) приводит к отказу всей системы. Предполагается, что все множественные отказы полностью взаимосвязаны. Вероятность безотказной работы такой системы определяется как Rр={1-(1-R1)n}R2, где n - число одинаковых элементов; R1 - вероятность безотказной работы элементов, обусловленная независимыми отказами; R2 - вероятность безотказной работы системы, обусловленная множественными отказами.

При постоянных интенсивностях отказов l1 и l2 выражение для вероятности безотказной работы принимает вид

Rр(t)={1-(1-e-(1-a)lt)n}e-alt, (4.5.28)
где t - время.

Влияние множественных отказов на надежность системы с параллельным соединением элементов наглядно демонстрируется с помощью рис. 4.5.14 – 4.5.16; при увеличении значения параметра a вероятность безотказной работы такой системы уменьшается.

Параметр a принимает значения от 0 до 1. При a=0 модифицированная параллельная схема ведет себя как обычная параллельная схема, а при a=1 она действует как один элемент, т. е. все отказы системы являются множественными.

Поскольку интенсивность отказов и среднее время наработки на отказ любой системы можно определить с помощью (4.3.7) и формул
Анализ надежности систем при множественных отказах - student2.ru ,
Анализ надежности систем при множественных отказах - student2.ru ,
с учетом выражения для Rр(t) получаем, что интенсивность отказов (рис. 4.5.17) и средняя наработка на отказ модифицированной системы соответственно равны
Анализ надежности систем при множественных отказах - student2.ru , (4.5.29)
Анализ надежности систем при множественных отказах - student2.ru , где Анализ надежности систем при множественных отказах - student2.ru . (4.5.30)

Анализ надежности систем при множественных отказах - student2.ru

Рис. 4.5.14. Зависимость вероятности безотказной работы системы с параллельным соединением двух элементов от параметра a

Анализ надежности систем при множественных отказах - student2.ru

Рис. 4.5.15. Зависимость вероятности безотказной работы системы с параллельным соединением трех элементов от параметра a

Анализ надежности систем при множественных отказах - student2.ru

Рис. 4.5.16. Зависимость вероятности безотказной работы системы с параллельным соединением четырех элементов от параметра a

Анализ надежности систем при множественных отказах - student2.ru

Рис. 4.5.17. Зависимость интенсивности отказов системы с параллельным соединением четырех элементов от параметра a

Пример 4.5.12. Требуется определить вероятность безотказной работы системы, состоящей из двух одинаковых параллельно соединенных элементов, если l=0,001 ч-1; a=0,071; t=200 ч.

Вероятность безотказной работы системы, состоящей из двух одинаковых параллельно соединенных элементов, для которой характерны множественные отказы, равна 0,95769. Вероятность безотказной работы системы, состоящей из двух параллельно соединенных элементов и характеризуемой только независимыми отказами, равна 0,96714.

Система с k исправными элементами из п одинаковых элементов включает в себя гипотетический элемент, соответствующий множественным отказам и соединенный последовательно с обычной системой типа k из n, для которой характерны независимые отказы. Отказ, отображаемый этим гипотетическим элементом, вызывает отказ всей системы. Вероятность безотказной работы модифицированной системы с k исправными элементами из n можно вычислить по формуле

Анализ надежности систем при множественных отказах - student2.ru Анализ надежности систем при множественных отказах - student2.ru , (4.5.31)

где R1 - вероятность безотказной работы элемента, для которого характерны независимые отказы; R2 - вероятность безотказной работы системы с k исправными элементами из n, для которой характерны множественные отказы.

При постоянных интенсивностях l1 и l2 полученное выражение принимает вид

Анализ надежности систем при множественных отказах - student2.ru Анализ надежности систем при множественных отказах - student2.ru . (4.5.32)

Зависимость вероятности безотказной работы от параметра a для систем с двумя исправными элементами из трех и двумя и тремя исправными элементами из четырех показаны на рис. 4.5.18 - 4.5.20. При увеличении параметра a вероятность безотказной работы системы уменьшается на небольшую величину (lt).

Анализ надежности систем при множественных отказах - student2.ru

Рис. 4.5.18. Вероятность безотказной работы системы, сохраняющей работоспособность при отказе двух из n элементов

Анализ надежности систем при множественных отказах - student2.ru

Рис. 4.5.19. Вероятность безотказной работы системы, сохраняющей работоспособность при отказе двух из четырех элементов

Анализ надежности систем при множественных отказах - student2.ru

Рис. 4.5.20. Вероятность безотказной работы системы, сохраняющей работоспособность при отказе трех из четырех элементов

Интенсивность отказов системы с k исправными элементами из n и средняя наработка на отказ могут быть определены следующим образом:

Анализ надежности систем при множественных отказах - student2.ru , (4.5.33)

где h = {1-e-(1-b)lt},

q = e(ra-r-a)lt

и

Анализ надежности систем при множественных отказах - student2.ru

Анализ надежности систем при множественных отказах - student2.ru . (4.5.34)

Пример 4.5.13. Требуется определить вероятность безотказной работы системы с двумя исправными элементами из трех, если l=0,0005 ч-1; a=0,3; t=200 ч.

С помощью выражения для Rkn находим, что вероятность безотказной работы системы, в которой происходили множественные отказы, составляет 0,95772. Отметим, что для системы с независимыми отказами эта вероятность равна 0,97455.

Система с параллельно-последовательным соединением элементов соответствует системе, состоящей из одинаковых элементов, для которых характерны независимые отказы, и ряда ветвей, содержащих воображаемые элементы, для которых характерны множественные отказы. Вероятность безотказной работы модифицированной системы с параллельно-последовательным (смешанным) соединением элементов можно определить с помощью формулы Rps={1-(1- Анализ надежности систем при множественных отказах - student2.ru )n}R2, где m - число одинаковых элементов в ответвлении, n - число одинаковых ответвлений.

При постоянных интенсивностях отказов l1 и l2 это выражение принимает вид

Rрs (t) = [1-(1-e-n(1-a)lt)m}e-alt. (4.5.35)

Интенсивность отказов системы с параллельно-последова­тельным соединением элементов и средняя наработка на отказ могут быть определены следующим образом:

lps(t)=al+mn(1-a)l Анализ надежности систем при множественных отказах - student2.ru , (4.5.36)

где l=1/[1-e-n(1-g)lt] и

Анализ надежности систем при множественных отказах - student2.ru . (4.5.37)

Система, элементы которой соединены по мостиковой схеме,соответствует схеме, состоящей из одинаковых элементов, для которых характерны независимые отказы, и последовательно подсоединенного к ним воображаемого элемента, для которого характерны множественные отказы. При множественном отказе гипотетического элемента вся система выходит из строя. Вероятность безотказной работы модифицированной системы с элементами, соединенными по мостиковой схеме, можно вычислить по формуле

Rb={1-2(1-R1)5+5(1-R1)4-2(1-R1)3-2(1-R1)2}R2 (4.5.38)

(здесь Rb - вероятность безотказной работы мостиковой схемы, для которой характерны множественные отказы). Эта формула при постоянных интенсивностях l1 и l2 принимает вид

Rb(t)=[1-2(1-e-At)5+5(1- e-At)4-2(1- e-At)3-2(1- e-At)2] e-blt. (4.5.39)

(здесь А=(1-a)l). Зависимость безотказной работы системы Rb(t) для различных параметров a показана на рис. 4.5.21. При малых значениях lt вероятность безотказной работы системы с элементами, соединенными по мостиковой схеме, убывает с увеличением параметра a.

Анализ надежности систем при множественных отказах - student2.ru

Рис. 4.5.21. Зависимость вероятности безотказной работы системы, элементы которой соединены по мостиковой схеме, от параметра a

Интенсивность отказов рассматриваемой системы и средняя наработка на отказ могут быть определены следующим образом:
lkn(t)=bl+A(-8p5+25p4-24p3+4p2+4p)+ Анализ надежности систем при множественных отказах - student2.ru , (4.5.40)

где p=(1-e-At) и

Т0= Анализ надежности систем при множественных отказах - student2.ru + Анализ надежности систем при множественных отказах - student2.ru + Анализ надежности систем при множественных отказах - student2.ru + Анализ надежности систем при множественных отказах - student2.ru . (4.5.41)

Пример 4.5.14. Требуется вычислить вероятность безотказной работы в течение 200 ч для системы с одинаковыми элементами, соединенными по мостиковой схеме, если l=0,0005 ч-1 и a=0,3.

Используя выражение для Rb(t), находим, что вероятность безотказной работы системы с соединением элементов по мостиковой схеме составляет примерно 0,96; для системы с независимыми отказами (т.е. при a=0) эта вероятность равна 0,984.

Наши рекомендации