Стандартной и предельно напряженной работы

Формирование и совершенствование различных морфо-физиологических функций и организма в целом зависят от их способности к дальнейшему развитию, что имеет во многом .генетическую (врожденную) основу и особенно важно для достижения как оптимальных, так и максимальных показателей физической и умственной работоспособности. При этом следует знать, что способность к выполнению физической работы может возрастать многократно, но до определенных пределов, тогда как умственная деятельность фактически не имеет ограничений в своем развитии. Каждый организм обладает определенными резервными возможностями. Систематическая мышечная деятельность позволяет путем совершенствования физиологических функций мобилизовать те резервы, о существовании которых многие даже не догадываются. Причем адаптированный к нагрузкам организм обладает гораздо большими резервами, более экономно и полно может их использовать. Так, в результате целенаправленных систематических занятий физическими упражнениями объем сердца может увеличиваться в 2—3 раза, легочная вентиляция — в 20—30 раз, максимальное потребление кислорода возрастает на порядок, устойчивость к гипоксии значительно повышается. Организм с более высокими морфофункциональными показателями физиологических систем и органов обладает повышенной способностью выполнять более значительные по мощности, объему, интенсивности и продолжительности физические нагрузки. Особенности морфофункционального состояния разных систем организма, формирующиеся в результате двигательной деятельности, называют физиологическими показателями тренированности. Они изучаются у человека в состоянии относительного покоя, при выполнении стандартных нагрузок и нагрузок различной мощности, в том числе и предельных. Одни физиологические показатели менее изменчивы, другие более и зависят от двигательной специализации и индивидуальных особенностей каждого занимающегося.

Основное средство физической культуры в процессе двигательной тренировки это физические упражнения. Во многих учебниках физиологии приводятся данные о том, что процесс упражнения стал предметом научного исследования под влиянием эволюционного учения Ж. Ламарка и Ч. Дарвина только в XIX в. В 1809 г. Ламарк опубликовал материал, где отметил, что у животных, обладающих нервной системой, развиваются органы, которые упражняются, а органы, которые не упражняются — слабеют и уменьшаются. Заслугой П.Ф. Лесгафта, известного анатома и отечественного общественного деятеля XIX — начала XX в., было то, что он показал конкретную морфологическую перестройку организма и отдельных органов человека в процессе упражнений и тренировки.

Известные российские физиологи И.М. Сеченов и И.П. Павлов показали роль центральной нервной системы в развитии тренированности на всех стадиях упражнения при формировании приспособительных процессов организма. В дальнейшем многие исследователи доказали, что упражнение вызывает глубокую перестройку во всех органах и системах организма человека. Сущность упражнения (а следовательно, и тренировки) составляют физиологические, биохимические, морфологические изменения, возникающие под воздействием многократно повторяющейся работы или других видов активности и при изменяющейся нагрузке и отражающие единство расхода и восстановления функциональных и структурных ресурсов в организме.

В ходе тренировки развитие работоспособности организма имеет разную динамику, но оно характеризует изменения, происходящие в организме в процессе упражнения, и отражает как наследственные качества организма, так и методы их развития и совершенствования. Таким образом, эффективность упражнения, находящая выражение в виде результата (достижение здоровья, успех в умственной, спортивной и другой деятельности), может иметь разные пути и динамику на всем пути процесса тренировки. Важная задача упражнения — сохранить здоровье и работоспособность на оптимальном уровне за счет активизации восстановительных процессов. В ходе упражнения совершенствуются высшая нервная деятельность, функции центральной нервной, нервно-мышечной, сердечно-сосудистой, дыхательной, выделительной и других систем, обмен веществ и энергии, а также системы их нейрогуморального регулирования к числу показателей тренированности в покое можно отнести:

1) изменения в состоянии центральной нервной системы, увеличение .подвижности нервных процессов, укорочение скрытого периода двигательных реакций;

2) изменения опорно-двигательного аппарата (увеличенная масса и возросший объем скелетных мышц, гипертрофия мышц, сопровождаемая улучшением их кровоснабжения, положительные биохимические сдвиги, повышенная возбудимость и лабильность нервно-мышечной системы);

3) изменения функции органов дыхания (частота дыхания у тренированных в покое меньше, чем у нетренированных); кровообращения (частота сердечных сокращений в покое также меньше, чем у нетренированных); состава крови и т.п.

Тренированный организм расходует, находясь в покое, меньше энергии, чем нетренированный. Как показали исследования основного обмена, в состоянии покоя, утром, натощак, в дни, которым не предшествовали дни соревнований и усиленных тренировок, общий расход энергии у тренированного организма ниже, чем у нетренированного, на 10% и даже на 15%. Понижение энергетических затрат при тренировке связано с соответствующим уменьшением количества потребляемого кислорода, вентиляции легких. Все это обусловлено отчасти тем, что тренированные лица лучше расслабляют свои мышцы, чем нетренированные. Дополнительное же напряжение мышц всегда связано с дополнительными энергетическими затратами. Кроме того, у тренированных отмечается в состоянии покоя несколько более пониженная возбудимость нервной системы по сравнению с нетренированными. Наряду с этим у них хорошая уравновешенность процессов возбуждения и торможения. Все эти изменения свидетельствуют о том, что тренированный организм очень экономно расходует энергию в покое, в процессе глубокого отдыха совершается перестройка его функций, происходит накопление энергии для предстоящей интенсивной деятельности.

Замедленная работа органов дыхания и кровообращения. Выше уже отмечалось, что в состоянии покоя у тренированных вентиляция легких меньше, чем у нетренированных. Это связано с малой частотой дыхательных движений. Глубина же отдельных дыханий изменяется незначительно, а подчас даже несколько увеличивается.

Подобная тенденция наблюдается и в работе сердца. Относительно низкий уровень минутного объема крови в состоянии покоя у тренированного по сравнению с нетренированным обусловлен небольшой частотой сердечных сокращений. Редкий пульс (брадикардия) — один из основных физиологических спутников тренированности. У спортсменов, специализирующихся в стайерских дистанциях, частота сердечных сокращений в покое особенно мала — 40 удар/мин и меньше. Это почти никогда не наблюдается у неспортсменов. Для них наиболее типична частота пульса — около 70 удар/мин.

Тренировка накладывает глубокий отпечаток на организм, вызывая в нем как морфологические, так физиологические и биохимические перестройки. Все они направлены на обеспечение высокой активности организма при выполнении работы.

Реакции на стандартные (тестирующие) нагрузки у тренированных лиц характеризуются следующими особенностями: 1) все показатели деятельности функциональных систем в начале работы (в период врабатывания) оказываются выше, чем у нетренированных; 2) в процессе работы уровень физиологических сдвигов менее высок; 3) период восстановления существенно короче,

При одной и той же работе тренированные спортсмены расходуют меньше энергии, чем нетренированные. У первых меньше величина кислородного запроса, меньше размер кислородной задолженности, но относительно большая доля кислорода потребляется во время работы. Следовательно, одна и та же работа происходит у тренированных с большей долей участия аэробных процессов, а у нетренированных — анаэробных. Вместе с тем во время одинаковой работы у тренированных ниже, чем у нетренированных, показатели потребления кислорода, вентиляции легких, частоты дыхания.

Аналогичные изменения наблюдаются в деятельности сердечно-сосудистой системы. Минутный объем крови, частота сердечных сокращений, систолическое кровяное давление повышаются во время стандартной работы в меньшей степени у более тренированных. Изменения в химизме крови и мочи, вызванные стандартной работой, у более тренированных, как правило, выражены слабее по сравнению с менее тренированными. У первых работа вызывает меньшее нагревание организма и потоотделение, чем у вторых.

Характерны различия в показателях работы самих мышц. Электро-миографические исследования позволили обнаружить, что электрическая активность мышц у тренированных повышена не так сильно, как у нетренированных, менее продолжительна, концентрируется к моменту наибольших усилий, снижаясь до нуля в периоды расслабления. Более высокие показатели возбудимости мышц и нервной системы, неадекватные изменения функций различных анализаторов особенно выражены у менее тренированных.

Результаты всех этих исследований позволяют сделать два важных вывода относительно влияния тренировки. Первый заключается в том, что тренированный организм выполняет стандартную работу более экономно, чем нетренированный. Тренировка обусловливает такие приспособительные изменения в организме, которые вызывают экономизацию всех физиологических функций. Бурная реакция организма на работу у нетренированного человека проявляется в неэкономном расходовании сил и энергии, чрезмерном функционировании различных физиологических систем, их малой взаимной отрегулированности. В процессе тренировки организм приобретает способность реагировать на ту же работу умереннее, его физиологические системы начинают действовать более согласованно, координированно, силы расходуются экономнее. Второй вывод состоит в том, что одна и та же работа по мере развития тренированности становится менее утомительной. Для нетренированного стандартная работа может оказаться относительно трудной, выполняется им с напряжением, характерным для тяжелой работы, и вызывает утомление, тогда как для тренированного та же нагрузка будет относительно легкой, потребует меньшего напряжения и не вызовет большого утомления.

Эти два взаимосвязанных результата тренировки — возрастающая экономичность и уменьшающаяся утомительность работы ~ отражают ее физиологическое значение для организма. Явление экономизации обнаружилось, как было показано выше, уже при исследовании организма в состоянии покоя. Исследования же во время работы позволили увидеть также те физиологические процессы, которые обусловливают благоприятные реакции организма на работу вследствие тренировки, уменьшают степень трудности и утомительности работы.

Процесс восстановления после стандартной работы у тренированных заканчивается раньше, чем у нетренированных. Ход кривой восстановления какой-либо функции сразу после работы у тренированных характеризуется более крутым спадом, в то время как у нетренированных — более поло

Проявления тренированности при предельно нагрузке. Нагрузка, выполняемая на тренировках и соревнованиях, не бывает стандартной. На напряженной тренировке и соревнованиях каждый стремится достичь максимально возможной для него интенсивности работы. Физиологические исследования, проводимые при работе на пределе функциональных возможностей организма, могут дать представление о его физиологических возможностях.

Применяются три варианта исследований при такой работе.Первый вариант состоит в регистрации физиологических изменений во время выполнения спортивного упражнения в условиях соревнования или близких к ним. Физиологические функции регистрируются во время этой работы, или сразу после нее, или на протяжении всего последующего восстановительного периода.

Второй вариант представляет собой лабораторную работу в виде бега на месте, или работу на велоэргометре, или бег на тредбане. Испытуемый совершает работу, постепенно усиливая ее мощность с целью максимальной мобилизации всех функций организма, обеспечивающих предельную работу. К концу такого усиления испытуемый уже работает в полную силу своих возможностей. В это время и производят необходимые физиологические замеры, которые характеризуют предельную мобилизацию физиологических возможностей организма спортсмена.

Третий вариант заключается в том, что испытуемый совершает работу, строго стандартную по мощности. Однако продолжительность работы не ограничивается. Она производится до тех пор, пока испытуемый может поддерживать заданную мощность (заданное число оборотов педалей, темп бега при определенной высоте подъема бедра, скорость бега или плавания за лидером). Работа прекращается в тот момент, когда ее мощность или скорость передвижения начинают неотвратимо падать и испытуемый даже при всем напряжении своих сил вынужден отказаться от дальнейшего выполнения работы в данных условиях. Иначе говоря, с целью характеристики тренированности исследуется выполнение работы «до отказа».

Результаты исследований при предельной работе спортсмена резко отличаются от тех, которые были получены при изучении стандартной работы. При предельной работе отмечалось обратное: у тренированных во многих физиологических показателях были большие сдвиги, чем у нетренированных. Это выражается в том, что тренированный расходует при предельной работе больше энергии, чем нетренированный, а объясняется тем, что сама работа, произведенная тренированным, превышает величину работы, которую может выполнить нетренированный. Экономизация проявляется в несколько меньшем расходе энергии на единицу работы, однако весь объем работы у тренированного при предельной работе настолько велик, что общая величина затраченной энергии оказывается очень большой.

Преобладание расхода энергии у тренированных особенно заметно в тех случаях, когда выполняемая работа не отличается сложностью. Вращение педалей велоэргометра сопровождается почти одинаковым расходом энергии у мастера спорта и спортсмена третьего разряда. Между тем различия в количестве работы, которую может выполнить на велоэргометре мастер или новичок, очень велики, что и определяет различия в величинах энергетических трат.

Весьма тесно связаны с тренированностью спортсмена показатели максимального потребления кислорода. Чем тренированнее спортсмен, тем большее количество кислорода он в состоянии потребить во время предельной работы. Самые высокие показатели (5,5—6,5 л/мин, или 80—90 мл/кг) зарегистрированы у представителей циклических видов спорта — мастеров международного класса, находящихся в момент исследования в состоянии наилучшей спортивной формы. Несколько меньшие цифры — около 4,5—5,5 л/мин, или 70—80 мл/кг, — отмечаются у менее подготовленных мастеров спорта и некоторых перворазрядников. У спортсменов второго, третьего разряда величина максимального потребления кислорода достигает приблизительно 3,5— 4,5 л/мин, или 60—70 мл/кг. Показатель ниже 3 л/мин, или 50 мл/кг, характеризует низкий уровень тренированности.

Такая тесная связь между максимальным потреблением кислорода и тренированностью наблюдается в тех видах спорта, которые предъявляют значительные требования к снабжению мышц кислородом и характеризуются высоким уровнем аэробных реакции. Для специализирующихся в работе максимальной мощности связь между тренированностью и максимальным потреблением кислорода очень мала, так как для них более характерна связь между тренированностью и максимальным кислородным долгом, отражающим возможный объем анаэробных процессов в организме. У таких спортсменов (например, бегунов на короткие и средние дистанции) максимальный кислородный долг может достигать 25 л, если это спортсмены очень высокого класса. У менее тренированных спортсменов максимальный кислородный долг не превышает 10—15 л.

Большая величина максимального потребления кислорода у высокотренированных спортсменов тесно связана с большими величинами объема дыхания и кровообращения. Максимальное потребление кислорода, равное 5—6 л/мин, сопровождается легочной вентиляцией, достигающей 200 л в 1 мин, при частоте дыхания, превышающей 60 в 1 мин, и глубине каждого дыхания, равной более 3 л. Иначе говоря, максимальное потребление кислорода сопровождается максимальной интенсивностью легочного дыхания, которое у высокотренированных спортсменов достигает значительно больших величин, чем у малотренированных. Соответственно этому максимальных величин достигает минутный объем крови. Для того чтобы транспортировать от легких в мышцы 5—6 л кислорода в 1 мин, сердце должно перекачивать в каждую минуту около 35 л крови. Частота сердечных сокращений при этом составляет 180—190 в 1 мин, а систолический объем крови может превышать 170 мл. Естественно, что столь резко возрастающая скорость кровотока сопровождается высоким подъемом артериального давления, достигающим 200—250 мм рт. ст.

Если выполняемая предельная работа характеризуется высокой интенсивностью анаэробных реакций, то она сопровождается накоплением продуктов анаэробного распада. Оно больше у тренированных спортсменов, чем у нетренированных. Например, концентрация молочной кислоты в крови при предельной работе может доходить у тренированных спортсменов до 250—300 мг%. Соответственно этому общие биохимические сдвиги в крови и моче у тренированных спортсменов при предельной работе значительно большие, чем у нетренированных.

Понижение уровня сахара в крови, являющееся одним из основных признаков утомления, наиболее выражено при очень длительной работе у хорошо тренированных спортсменов. Даже при величине содержания сахара в крови ниже 50 мг% тренированной марафонец еще долго способен сохранять высокий темп бега, в то время как нетренированный при таком низком содержании сахара в крови вынужден сойти с дистанции.

Значительные изменения в химизме крови во время работы говорят о том, что центральная нервная система тренированного организма обладает устойчивостью к действию резко измененного состава внутренней среды. Организм высокотренированного спортсмена обладает повышенной сопротивляемостью к действию факторов утомления, иначе говоря, большой выносливостью. Он сохраняет работоспособность при таких условиях, при которых нетренированный организм вынужден прекратить работу.

Таким образом, функциональные показатели тренированности при выполнении предельно напряженной работы в циклических видах двигательной деятельности обусловливаются мощностью работы. Так,

из приведенных данных видно, что при работе субмаксимальной и максимальной мощности наибольшее значение имеют анаэробные процессы энергообеспечения, т.е. способность адаптации организма к работе при существенно измененном составе внутренней среды в кислую сторону. При работе большой и умеренной мощности главным фактором результативности является своевременная и удовлетворяющая доставка кислорода к работающим тканям. Аэробные возможности организма при этом должны быть очень высоки.

При предельно напряженной мышечной деятельности происходят значительные изменения практически во всех системах организма, и это говорит о том, что выполнение этой напряженной работы связано с вовлечением в ее реализацию больших резервных мощностей организма, с усилением обмена веществ и энергии.

Таким образом, организм человека, систематически занимающегося активной двигательной деятельностью, в состоянии совершить более значительную по объему и интенсивности работу, чем организм человека, не занимающегося ею. Это обусловлено систематической активизацией физиологических и функциональных систем организма, вовлечением и повышением их резервных возможностей, своего рода тренированностью процессов их использования и пополнения. Каждая клетка, их совокупность, орган, система органов, любая функциональная система в результате целенаправленной систематической упражняемости повышают показатели своих функциональных возможностей и резервных мощностей, обеспечивая в итоге более высокую работоспособность организма за счет того же эффекта упражняемости, тренированности мобилизации обменных процессм.

Обмен веществ и энергии

Основной признак живого организма — обмен веществ и энергии. В организме непрерывно идут пластические процессы, процессы роста, образования сложных веществ, из которых состоят клетки и ткани. Параллельно происходит обратный процесс разрушения. Всякая деятельность человека связана с расходованием энергии. Даже во время сна многие органы (сердце, легкие, дыхательные мышцы) расходуют значительное количество энергии. Нормальное протекание этих процессов требует расщепления сложных органических веществ, так как они являются единственными источниками энергии для животных и человека. Такими веществами являются белки, жиры и углеводы. Большое значение для нормального обмена веществ имеют также вода, витамины и минеральные соли. Процессы образования в клетках организма необходимых ему веществ, извлечение и накопление энергии (ассимиляция) и процессы окисления и распада органических соединений, превращение энергии и ее расход (диссимиляция) на нужды жизнедеятельности организма между собой тесно переплетены, обеспечивают необходимую интенсивность обменных процессов в целом и баланс поступления и расхода веществ и энергии.

Обменные процессы протекают очень интенсивно. Почти половина тканей тела обновляется или заменяется полностью в течение трех месяцев. За 5 лет учебы роговица глаза у студента сменяется 350 раз, ткани желудка обновляются 500 раз, эритроцитов вырабатывается до 300 млрд ежедневно, в течение 5—7 дней половина всего белкового азота печени заменяется.

Обмен белков. Белки — необходимый строительный материал протоплазмы клеток. Они выполняют в организме специальные функции. Все ферменты, многие гормоны, зрительный пурпур сетчатки, переносчики кислорода, защитные вещества крови являются белковыми телами. Белки сложны по своему строению и весьма специфичны. Белки, содержащиеся в пище, и белки в составе нашего тела значительно отличатся по своим качествам. Если белок извлечь из пищи и ввести непосредственно в кровь, то человек может погибнуть. Белки состоят из белковых элементов ~ аминокислот, которые образуются при переваривании животного и растительного белка и поступают в кровь из тонкого кишечника. В состав клеток живого организма входит более 20 типов аминокислот. В клетках непрерывно протекают процессы синтеза огромных белковых молекул, состоящих из цепочек аминокислот. Сочетание этих аминокислот (всех или части из них), соединенных в цепочки в разной последовательности, и обусловливает бесчисленное количество разнообразных белков.

Аминокислоты делятся на незаменимые и заменимые. Незаменимыми называются те, которые организм получает только с пищей. Заменимые могут быть синтезированы в организме из других аминокислот. По содержанию аминокислот определяется ценность белков пищи. Вот почему белки, поступающие с пищей, делятся на две группы: полноценные, содержащие все незаменимые аминокислоты, и неполноценные, в составе которых отсутствуют некоторые незаменимые аминокислоты. Основным источником полноценных белков служат животные белки. Растительные белки (за редким исключением) неполноценные.

В тканях и клетках непрерывно идет разрушение и синтез белковых структур. В условно здоровом организме взрослого человека количество распавшегося белка равно количеству синтезированного. Так как баланс белка в организме имеет большое практическое значение, разработано много методов его изучения.

Баланс белка определяется разностью между количеством белка, поступившего с пищей, и количеством белка, подвергшегося за это время разрушению. Количество поступившего белка определить не трудно: для этого надо определить количество азота в пище. В состав белков непременно входит азот, которого нет в углеводах и жирах. Следовательно, зная количество азота, введенного в организм с пищей, и количество выделенного организмом азота, можно определить количество утилизированного организмом белка. О количестве белка, подвергшегося в организме разрушению, судят по количеству азота, выделенного организмом с экскрементами.

В относительно здоровом организме человека среднего возраста количество введенного азота равно количеству выделенного. Такое соотношение называется азотистым равновесием. В организме белок не откладывается про запас, не депонируется. Поэтому при тяжелых физических нагрузках, болезнях или голодании в организме может идти процесс распада собственных белков. Количество выведенного азота при этом больше, чем количество поступившего. Это состояние называется отрицательным азотистым балансом.

В некоторых случаях в организме синтез белка превышает его распад. Количество выведенного азота при этом меньше количества поступающего. Такое состояние называется положительным азотистым балансом. Положительный азотистый баланс наблюдается у детей, беременных женщин, выздоравливающих больных.

Функции белка не ограничиваются пластическим значением для организма. Растворенные в плазме белки образуют коллоидный раствор крови, который взаимодействует с основным веществом соединительной ткани через тканевую жидкость. Движение веществ сквозь стенки капилляров — сложное сочетание процессов диффузии, фильтрации и осмоса. Поскольку концентрация белков в крови выше, чем в тканевой,жидкости, осмотическое давление в крови также выше. Осмотичеекое давление белков и других коллоидов, называемое онкотическим, удерживает воду в крови. Если онкотическое давление крови очень низкое (например, при длительном белковом голодании), обратное проникновение тканевой жидкости в капилляры уменьшается и в тканях могут возникнуть отеки. Белки плазмы крови выполняют роль буферных систем, поддерживающих рН крови, а в виде гемоглобина участвуют в транспорте газов. Кроме того, велика и регуляторная роль белков в обмене углеводов и жиров. Входя в состав ферментов и гормонов, белки определяют ход химических превращений в организме и интенсивность обмена веществ. Существенна роль белка в функции мышц. Белок также является энергетическим веществом (при окислении в организме может образовываться 4,1 ккал, а в лабораторных условиях еще дополнительно 1,3 ккал).

Регуляция белкового равновесия осуществляется гуморальным и нервным путями (через гормоны коры надпочечников и гипофиза, промежуточный мозг).

Содержание белка в пищевых продуктах различно. К примеру, в свежем мясе и рыбе 18 г на 100 г продукта, в бобовых — 18, хлебе — 7, сыре, твороге — 20.

Считается, что норма потребления белка в день для взрослого человека составляет 80—100 г. Если его поступает больше, то лишний белок идет на покрытие энергетических затрат организма. При этом он может трансформироваться в углеводы и другие соединения. При больших физических нагрузках потребность организма в белке может доходить до 150 г/сут.

Азот — один из конечных продуктов окисления белка. Однако азот выделяется не в свободном состоянии, а в виде соединений с водородом — NH.4. Это соединение (аммиак) вредно для организма. Аммиак обезвреживается в печени, превращаясь в мочевину, которая выводится с мочой.

Обмен углеводов Углеводы делятся на простые и сложные. Простые углеводы называются моносахаридами. Моносахариды хорошо растворяются в воде и поэтому быстро всасываются из кишечника в кровь. Сложные углеводы построены из двух или многих молекул моносахаридов. Соответственно они называются дисахаридами и полисахаридами. К дисахаридам относятся свекловичный сахар, молочный, солодовый и некоторые другие. Они хорошо растворяются в воде, но из-за большой величины молекул почти не всасываются в кишечнике. К полисахаридам относятся гликоген, крахмал, клетчатка. Они не растворимы в воде и могут всасываться в кровь лишь после расщепления до моносахаридов.

Углеводы поступают в организм с растительной и частично с животной пищей. Они также синтезируются в организме из продуктов расщепления аминокислот и жиров. При избыточном поступлении превращаются в жиры и в таком виде откладываются в организме.

Значение углеводов. Углеводы — важная составная часть живого организма. Однако их в организме меньше, чем белков и жиров, они составляют всего лишь около 2% сухого вещества тела.

Углеводы в организме главный источник энергии. Они всасываются в кровь в основном в виде глюкозы. Это вещество разносится по тканям и клеткам организма: В клетках глюкоза при участии ряда ферментов окисляется до Н2О и СО2 Одновременно освобождается энергия (4,1 ккал), которая используется организмом при реакциях синтеза или при мышечной работе.,

Клетки головного мозга в отличие от других клеток организма не могут депонировать глюкозу. Кроме того, если уровень глюкозы в крови падает ниже 60—70 мг% (т.е. 60—70 мг на 100 мл крови), то почти прекращается переход глюкозы из крови в нервные клетки. При таком низком содержании сахара в крови (гипогликемия) появляются судороги, потеря сознания (гипогликемический шок) и наступает угроза жизни. У практически здорового человека автоматически поддерживается оптимальный уровень глюкозы в крови (80—120 мг%).

Если с пищей поступает недостаточное количество сахара, то он синтезируется из жиров и белков. Излишки сахара (после приема пищи, богатой углеводами) превращаются в печени и мышцах в гликоген и там откладываются (депонируются). Этот процесс регулируется гормоном поджелудочной железы — инсулином. При нарушении функции поджелудочной железы развивается тяжелое заболевание — диабет. В этой ситуации сахар не преобразуется в гликоген, и количество его в крови может достигать 200—400 мг%. Такое высокое содержание сахара в крови (гипергликемия) приводит к тому, что почки начинают выделять сахар с мочой. За день больной может терять таким путем до 500 г сахара.

Значение углеводов при мышечной деятельности. Запасы углеводов особенно интенсивно используются при физической работе. Однако полностью они никогда не исчерпываются. При уменьшении запасов гликогена в печени его дальнейшее расщепление прекращается, что ведет к уменьшению концентрации глюкозы в крови. Мышечная деятельность в этих условиях продолжаться не может. Уменьшение содержания глюкозы в крови является одним из факторов, способствующих развитию утомления. Поэтому для успешного выполнения длительной и напряженной работы необходимо пополнять углеводные запасы организма. Это достигается увеличением содержания углеводов в пищевом рационе и дополнительным введением их перед началом работы или непосредственно при ее выполнении. Насыщение организма углеводами способствует сохранению постоянной концентрации глюкозы в крови и тем самым повышает работоспособность человека.

Влияние углеводов на работоспособность установлено лабораторными экспериментами и наблюдениями при спортивной деятельности. В опытах, проведенных B.C. Фарфелем, обнаружено, что натощак даже тренированные спортсмены не смогли пройти на лыжах 50 км. В этих условиях резко снизилось содержание глюкозы в крови и спортсмены были вынуждены прекратить работу, пройдя лишь 35 км. При нормальном питании и дополнительном приеме углеводов на старте концентрация глюкозы в крови остается постоянной и работоспособность спортсменов при этом сохраняется на протяжении этой дистанции.

Углеводы следует принимать или непосредственно перед стартом, или не позднее чем за 2 ч до начала работы. Если же это делать за 30— 90 мин до старта, то начало работы совпадает с периодом усиленного депонирования углеводов. Это ведет к уменьшению глюкозы, выходящей из печени в кровь. Преобладание процессов депонирования углеводов над их расщеплением сопровождается понижением концентрации глюкозы в крови и ведет к ухудшению работоспособности организма.

Прием углеводов более чем за 2 ч до старта обеспечивает почти полное их всасывание и депонирование до начала работы. В этом случае никаких затруднений в расщеплении гликогена в печени не возникает. Прием углеводов непосредственно на старте также не создает каких-либо трудностей для расщепления. В этих условиях глюкоза начинает всасываться уже в процессе мышечной деятельности, при которой расщепление гликогена и выход глюкозы в кровь преобладает над депонированием. Указанные сроки дополнительного питания должны изменяться в зависимости от количества принимаемой глюкозы. Например, большие дозы сахара (200 г и более) задерживают выход углеводов в, депо в течение 3 ч и более.

При приеме углеводов непосредственно во время работы концентрация глюкозы в крови увеличивается быстрее, чем это можно предположить, учитывая время, необходимое на их переваривание и всасывание. По-видимому, это происходит вследствие рефлекторного усиления расщепления углеводов в печени при действии сахара на рецепторы ротовой полости. Эта точка зрения подтверждается опытами с изолированным воздействием раздражителей сладкого вкуса на рецепторы слизистой оболочки рта или с введением небольших количеств 1,5%-ной глюкозы. В этих случаях сахар или совсем не поступает в организм, или поступает в ничтожном количестве, которое не может заметно увеличить концентрацию глюкозы в крови. Однако благодаря рефлекторным воздействиям с рецепторов ротовой полости усиливается расщепление углеводов в печени и, как следствие этого, повышается концентрация глюкозы в крови.

Регуляция углеводного обмена. Депонирование углеводов, использование углеводных запасов печени и все другие процессы углеводного обмена регулируются центральной нервной системой. Большое значение в регуляции углеводного обмена имеет и кора больших полушарий. Одним из примеров этого может служить условнорефлекторное увеличение концентрации глюкозы в крови у спортсменов в предстартовом состоянии.

Эфферентные нервные пути, обеспечивающие регуляцию углеводного обмена, относятся к вегетативной нервной системе. Симпатические нервы усиливают процессы расщепления и выход гликогена из печени. Парасимпатические нервы, наоборот, стимулируют депонирование гликогена. Нервные импульсы могут воздействовать либо прямо на клетки печени, либо косвенным путем, через железы внутренней секреции. Гормон мозгового слоя надпочечника адреналин способствует выходу углеводов из депо. Гормон поджелудочной железы инсулин обеспечивает их депонирование. Кроме этих гормонов в регуляции углеводного обмена участвуют гормоны коркового слоя надпочечников, щитовидной железы и передней доли гипофиза.

В сахаре содержится 95% углеводов, меде — 76, шоколаде — 49, картофеле — 18, молоке — 5, печени — 4, изюме — до 65%.

Обмен жиров Жиры (липиды) — важный источник энергии в организме, необходимая составная часть клеток. Излишки жиров могут депонироваться в организме. Откладываются они главным образом в подкожной жировой клетчатке, сальнике, печени и других внутренних органах. Общее количество жира у человека может составлять 10—12% массы тела, а при ожирении — 40—50%.

В желудочно-кишечном тракте жир распадается на глицерин и жирные кислоты, которые всасываются в тонких кишках. Затем он вновь синтезируется в клетках слизистой кишечника. Образовавшийся жир качественно отличается от пищевого и является специфическим для человеческого организма. В организме жиры могут синтезироваться также из белков и углеводов.

Жиры, поступающие в ткани из кишечника и из жировых депо, путем сложных превращений окисляются, являясь, таким образом, источником энергии. При окислении 1 г жира освоб<

Наши рекомендации