Клонирование и вектора для клонирования
Векторы клонирования
Имеются два типа векторов обычные и специализированные. Обычные векторы клонирования дают возможность из огромного количества генов выбрать искомый и создать библиотеку генов, а специализированные связаны с экспрессией генов. Обычные векторы применяют в основном для вьщеления и изучения генов, входящих в состав генома различных клеток. Что касается специализированных векторов, то они представляют особый интерес для биотехнологии, так как экспрессия соответствующих генов дает основание для сверх синтеза целевых продуктов. Для этого ген, кодирующий необходимый белок, вводится в хромосому компетентных клеток и ассоциируется с промотором. [c.501]
Манипуляции с X векторами. Клонирование космид и [c.190]
В настоящее время гены РНК- или ДНК-содержащих вирусов легко клонируются в клетках прокариот при использовании плазмидного или фагового вектора. Клонированная вирус- [c.154]
После конструирования вектора рекомбинантные плазмиды смешивают с клетками для трансформации. Например, клетки кишечной палочки со встроенным вектором выращивают на питательной среде, и в процессе этого роста образуются рекомбинантные ДНК, содержащие гены из разных организмов. Поскольку при этом образуются сходные молекулы (клоны), такой процесс называется клонированием. Далее клонированную ДНК вводят в клетки, где и происходит экспрессия генов, т.е. процессы транскрипции и трансляции с образованием необходимого белка. [c.61]
Методами генной инженерии удается объединить в одном геноме антигены многих вирусов, например, гриппа и бешенства, герпеса и гепатита В. Клетки, зараженные одним вирусом, приобретают временный иммунитет к заражению другим вирусом - такое явление называется интерференцией. Это сложный процесс, определяемый многими факторами, в том числе и синтезом в клетке специального белка - интерферона. До сих пор интерфероны выделяли из крови животных или из донорской крови, что являлось сложным и дорогим методом. Генноинженерный способ получения интерферона (выделение его гена и клонирование в плазмидных векторах) позволил практически решить проблему достаточного обеспечения интерфероном больных гриппом даже во время эпидемий. [c.62]
Рис. 4.1. Клонирование рекомбинантной ДНК. Донор-ную ДНК расщепляют рестрицирующей эндонуклеазой и встраивают в клонирующий вектор. Полученную конструкцию вводят в попу ляцию клеток-хозяев, идентифицируют те клетки, которые содержат рекомбинантную ДНК, и культивируют их. При необходимости можно индуцировать экспрессию клонированного гена в клет-ках-хозяевах и получить кодируемый им белок. Рис. 4.1. <a href="/info/1391611">Клонирование рекомбинантной</a> ДНК. Донор-ную ДНК расщепляют <a href="/info/200438">рестрицирующей эндонуклеазой</a> и встраивают в <a href="/info/199908">клонирующий вектор</a>. <a href="/info/1734454">Полученную конструкцию</a> вводят в попу <a href="/info/535604">ляцию</a> клеток-хозяев, идентифицируют те клетки, которые содержат рекомбинантную ДНК, и культивируют их. При необходимости можно индуцировать <a href="/info/1530119">экспрессию клонированного гена</a> в клет-ках-хозяевах и получить кодируемый им белок.
Хотя некоторые векторы устроены весьма замысловато, все системы клонирования отвечают двум основным требованиям наличие нескольких сайтов для клонирования и возможность достаточно простой идентификации клеток с рекомбинантными ДНК. Следует отметить, что уникальные сайты рестрикции выполняют в опытах с рекомбинантной ДНК двойную функ- [c.62]
Векторы для клонирования крупных фрагментов ДНК [c.71]
Чтобы иметь возможность клонировать целый ген, донорную ДНК расщепляют лишь частично. При этом получаются фрагменты разной длины, из которых затем создают геномную библиотеку. Для клонирования крупных фрагментов ДНК были сконструированы векторы на основе бактериофагов X и Р1, а также плазмиды Р. [c.78]
Секвенирование ДНК с помощью вектора на основе фага М13 Для определения нуклеотидной последовательности клонированных ДНК используются разные подходы. Один из первых основывался на [c.91]
Рис. 5.16. Использование бактериофага М13 для клонирования и секвенирования. А. Встраивание фрагмента ДНК в двухцепочечную репликативную форму ДНК М13. Б. Секвенирование комплементарных цепей клонированного фрагмента ДНК с помощью одного и того же праймера (Р1). Стрелками показана ориентация вставки в векторе. Рис. 5.16. <a href="/info/97700">Использование бактериофага</a> М13 для клонирования и секвенирования. А. Встраивание фрагмента ДНК в <a href="/info/1324864">двухцепочечную репликативную</a> форму ДНК М13. Б. Секвенирование <a href="/info/509747">комплементарных цепей</a> <a href="/info/1345809">клонированного фрагмента</a> ДНК с помощью одного и того же праймера (Р1). Стрелками показана ориентация вставки в векторе.
К сожалению, в результате ошибочного спаривания праймера заданной длины с более чем одним участком внутри вставки могут быть получены неоднозначные результаты. Чтобы избежать этого, используют праймеры длиной не менее 24 нуклеотидов и стараются строго соблюдать условия отжига. Именно таким образом были секвенированы фрагменты ДНК, клонированные в бактериофаге X (-20 т. п. н.) или в космидном векторе (-40 т. п. н.). [c.93]
Рис. 7.17. Двухцистронный экспрессирующий вектор. Клонированные гены (а и (3) кодируют субъединицы димерного белка (а 3). Они разделены сегментом ДНК, который после транскрипции, на уровне мРНК, играет роль внутреннего сайта связывания рибосом. Каждый ген находится под контролем эукариотических промотора (р) и сигнала полиаденилирования (ра). Трансляция мРНК начинается с 5 -конца и с внутреннего сайта (угловые стрелки). Синтезированные субъединицы объединяются с образованием функционального димерного белка. Вектор содержит сайты инициации репликации, функционирующие в Е. соИ orf) и в клетках млекопитающих (orF y, селективный маркерный ген (Amp ) для отбора трансформированных клеток Е. соИ селективный маркерный ген (СМ), находящийся под контролем эукариотических промотора (р) и сигнала полиаденилирования (ра). Рис. 7.17. Двухцистронный <a href="/info/200120">экспрессирующий вектор</a>. <a href="/info/32984">Клонированные гены</a> (а и (3) кодируют субъединицы димерного белка (а 3). Они разделены сегментом ДНК, который после транскрипции, на уровне мРНК, <a href="/info/1907646">играет роль</a> внутреннего <a href="/info/200464">сайта связывания</a> рибосом. Каждый ген находится под контролем эукариотических промотора (р) и сигнала полиаденилирования (ра). <a href="/info/1350395">Трансляция мРНК</a> начинается с 5 -конца и с внутреннего сайта (угловые стрелки). Синтезированные субъединицы объединяются с <a href="/info/660502">образованием функционального</a> димерного белка. Вектор содержит <a href="/info/1868768">сайты инициации</a> репликации, функционирующие в Е. соИ orf) и в <a href="/info/200744">клетках млекопитающих</a> (orF y, <a href="/info/200493">селективный маркерный</a> ген (Amp ) для отбора трансформированных клеток Е. соИ <a href="/info/200493">селективный маркерный</a> ген (СМ), находящийся под контролем эукариотических промотора (р) и сигнала полиаденилирования (ра).
Недавние достижения в области молекулярной биологии и синтеза пептидов создают основу для производства фактически неограниченных количеств очищенных вирусных белков или синтетических пептидов для использования их в иммунопрофилактике. Доступность больших количеств антигена делает возможным местное применение антигена для иммунизации против инфекций слизистых оболочек. В настоящее время при получении очищенных вирусных антигенов используют два различных подхода. Первый включает производство синтетических пептидов, соответствующих иммунологически важным доменам поверхностных антигенов [4], а второй—использование встроенной в соответствующий вектор клонированной вирусной ДНК для производства вирусных белков в эукариотических и прокариотических клетках. [c.152]
ИХ рестриктазами, разделяются электрофоретически на агарозе или полиакриламидном геле. Специфические фрагменты ДНК обнаруживаются затем путем гибридизации с помощью проб радиоактивно меченной нуклеиновой кислоты. Гибридизацию проводят после того, как фрагменты нуклеиновой кислоты будут физически перенесены с геля на мембранный фильтр (процедура, получивщая название перенос пятен , англ. blotting). Перенос производится таким образом, чтобы зафиксировать расположение пятен, которое было на геле. Это позволяет локализовать сегменты ДНК, комплементарные выбранной радиоактивной нуклеиновой кислоте (обычно РНК). Если для определенного белка радиоактивная РНК является информационной, то метод позволяет выделить ген этого белка. После идентификации гена его можно связать с соответствующим вектором клонирования и клонировать выращиванием в подходящем бактериальном штамме. [c.321]
Первый плазмидный вектор был получен С.Коэном (1973). Его источником была плазмида Е. соИ Rfi 5 с Mr 65 кДа. Плазмида стала родоначальником серии векторов и других структур. Особое место в генетическом манипулировании занимает плазмида, относящаяся к группе колициногенных плазмид Е. соИ. ol El реплицируется независимо от хромосомы и присутствует в количестве примерно 24 копий на клетку. Ее широко используют благодаря селективному маркеру в качестве вектора для клонирования фрагментов про- и эукариотической ДНК в Е. соИ. [c.118]
Векторы для клонирования в таких системах представляют собой двойные репликоны, способные существовать и в . соН, и в той клетке хозяина, для которой они предназначены. С этой целью создают гибридные векторы, содержащие репликон какой-либо из плазмид Е. соИ и требуемый репликон (из бактерий, дрожжей и др.), и первоначально клонируют с последующим отбором требуемых генов в хорошо изученной системе. Затем вьщеленные рекомбинантные плазмиды вводят в новый организм. Такие векторы должны содержать ген (или гены), придающий клетке-хозя-ину легко тестируемый признак. [c.124]
Промежуточный и бинарный векторы. Эти векторы конструируются на основе Ti-плазмид. Промежуточный вектор получают путем ряда сложных операций. Сначала Т-область с помощью рестриктаз вырезают из плазмиды, вставляют в вектор для клонирования в клетке Е. oli и размножают. Затем внутрь Т-области встраивают чужеродный ген и вновь размножают. Полученную рекомбинантную плазмиду вводят в клетки А. tumefa iens, несущие полную Ti-плазмиду. В результате двойного кроссинговера между гомологичными участками Т-область рекомбинантной плазмиды, содержащая чужеродный ген, включается в Ti-плазмиду клетки хозяина, заместив в ней нормальную Т-область. Наконец, бактериями, имеющими Ti-плазмиду со встроенньпли генами, заражают растения, где эти гены встраиваются в геном растительной клетки. [c.147]
Из организма - донора нужных генов - экстрагируют нативную ДНК (клонируемая ДНК, встраиваемая ДНК, ДНК-мищень, чужеродная ДНК), подвергают ее ферментативному гидролизу (расщепляют, разрезают) и соединяют (лигируют, сшивают) с другой ДНК (вектор для клонирования, клонирующий вектор) с образованием новой, рекомбинантной молекулы (конструкция клонирующий вектор-встроенная ДНК ). [c.50]
Один из множества Х-векторов для клонирования имеет два 7/иН1-сайта, фланкирующих участок длиной 20 т. п. н. При гидролизе очищенной фаговой ДНК рестриктазой ВатШ образует- [c.72]
Векторные системы, способные интегрировать крупные вставки (>100 т. п. н.), имеют большую ценность при анализе сложных эукариотических геномов. Без таких векторов не обойтись, например, при картировании генома человека или при идентификации отдельных генов. В отличие от библиотек с небольшими вставками, в геномной библиотеке с крупными вставками скорее всего будет представлен весь генетический материал организма. Кроме того, в этом случае уменьшается число клонов, которые нужно поддерживать, и увеличивается вероятность того, что каждый из генов будет присутствовать в своем клоне. Для клонирования фрагментов ДНК размером от 100 до 300 т. п. н. был сконструирован низкокопийный плазмидный вектор на основе бактериофага Р1 — химерная конструкция, называемая искусственной хромосомой на основе фага Р1. Был создан также очень стабильный вектор, способный интегрировать вставки длиной от 150 до 300 т. п. н., на основе Р-плазмиды (F-фактора, или фактора фертильности) Е. соИ, которая представлена в клетке одной или двумя копиями, с селекционной системой la Z векторов pU . Эта конструк- [c.76]
Типичный эксперимент по клонированию генов включает следующие этапы. 1. Рестрик-тазное расщепление ДНК, выделенной из организма, который содержит искомый ген. 2. Обработка вектора для клонирования (обычно плазмидного), который может реплицироваться в клетке-хозяине, теми же рестриктазами, которые использовались для расщепления донорной ДНК. 3. Смещивание этих двух образцов ДНК и сшивание фрагментов ДНК-лигазой фага Т4. 4. Трансформация сшитыми молекулами клеток-хозяев. Амплификация рекомбинантной ДНК в трансформированных клетках. [c.78]
Для получения линкеров синтезируют олигомеры, которые представляют собой палиндромные одноцепочечные нуклеотидные последовательности, спаривающиеся (гибридизующиеся) между собой. Линкеры содержат сайты узнавания для рестрицирующих эндонуклеаз, что позволяет осуществлять с их помощью клонирование фрагментов ДНК (рис. 5.8, А и Б). Короткий дуплекс длиной 6-12 пар нуклеотидов лигируют по тупым концам с ДНК-мишенью (обычно кДНК). Разрезают новую молекулу нужной рестрицирующей эндонуклеазой и получают фрагменты с выступающими одноцепочечными концами (липкими концами), с помощью которых встраивают ДНК-мишень в соответствующий вектор. Прежде чем проводить встраивание, рестрицированную смесь фракционируют для отделения ДНК с липкими концами от лишних линкерных молекул. Вектор тоже обрабатывают рестриктазой, отжигают его с фрагментами ДНК с липкими концами и сшивают с помощью ДНК-лигазы фага Т4. ДНК-мишень не должна содержать сайтов рестрикции, присутствующих в линкерной последовательности, в противном случае она также будет расщепляться ферментом. [c.85]
Основная цель экспериментов по клонированию генов, которые предполагается использовать в биотехнологии, — подбор условий для эффективной экспрессии в нужном организме-хозяине. К сожалению, сам факт встраивания того или иного гена в клонирующий вектор еще не означает, что этот ген будет экспрессирован. В то же время, чтобы получение коммерческого продукта было экономически оправданным, уровень его синтеза должен быть достаточно высоким. Для достижения эффективной экспрессии уже сконструировано много специфических векторов для этого проводились манипуляции с целым радом генетических элементов, контролирующих процессы транскрипции и трансляции, стабильность белков, секрецию продуктов из хозяйской клетки и т. д. Среди молекулярно-биологических свойств систем экспрессии наиболее важны следующие 1) тип промотора и терминатора транскрипции 2) прочность связывания мРНК с рибосомой 3) число копий клонированного гена и его локализация (в плазмиде или в хромосоме хозяйской клетки) 4) конечная локализация синтезируемого продукта 5) эффективность трансляции в организме хозяина 6) стабильность продукта в хозяйской клетке. [c.105]
Рис. 6.5. Клонирующий вектор pAVlO (без соблюдения масштаба). Показано положение гена устойчивости к тетрациклину (Tef), сайта рестрикции для эндонуклеазы Bglll, сайта инициации репликации (ori), промотора (р) и полилинкера (ПЛ). Встраивание клонированного гена в полилинкер ставит его под контроль промотора Тп5 (р). Стрелка указывает направление транскрипции. Рис. 6.5. <a href="/info/199908">Клонирующий вектор</a> pAVlO (без соблюдения масштаба). Показано <a href="/info/700874">положение гена</a> устойчивости к тетрациклину (Tef), <a href="/info/1324920">сайта рестрикции</a> для эндонуклеазы Bglll, <a href="/info/1868768">сайта инициации</a> репликации (ori), промотора (р) и <a href="/info/1386520">полилинкера</a> (ПЛ). Встраивание <a href="/info/32984">клонированного гена</a> в <a href="/info/1386520">полилинкер</a> ставит его под контроль промотора Тп5 (р). Стрелка указывает направление транскрипции.
Рис. 6.11. Образование случайно ориентированных тандемных повторов. А. Клонированные гены вырезают из клонирующего вектора с помощью рестрицирующей эндонуклеазы Abel и отделяют от векторной ДНК. . Создают условия, при которых происходит сшивание вырезанных генов. Поскольку нуклеотидные последовательности обоих выступающих концов генов одинаковы, последние могут соединяться в любой ориентации. В результате образуются тандемные повторы из случайно ориентированных последовательностей.