Формализованные методы прогнозирования.
Формализованные методы прогнозирования базируются на построении прогнозов формальными средствами математической теории, которые позволяют повысить достоверность и точность прогнозов, значительно сократить сроки их выполнения, облегчить обработку информации и оценки результатов.
Формализованные методы прогнозирования можно разделить на две группы: методы экстраполяции и методы математического моделирования. Экстраполяция заключается в изучении сложившихся в прошлом и настоящем устойчивых тенденций экономического развития и перенесении их на будущее. При простой экстраполяции все действующие ранее факторы, обуславливающие исследуемую тенденцию в прошлом и настоящем, останутся неизмененными и в будущем.
Следует различать формальную и прогнозную экстраполяцию. Формальная базируется на предположении о сохранении в будущем прошлых и настоящих тенденций развития объекта. При прогнозной фактическое увязывается с гипотезами о динамике исследуемого объекта, учитываются в перспективе альтернативные изменения самого объекта, его сущности.
При оценке параметров зависимостей наиболее распространены метод наименьших квадратов и его модификации, метод экспоненциального сглаживания, метод адаптивного сглаживания, метод скользящей средней и др.
Метод наименьших квадратов требует найти параметры модели тренда, минимизирующие ее отклонение от точек исходного временного ряда, т.е. минимизировать сумму квадратических отклонений между наблюдаемыми и расчетными величинами. Классический метод наименьших квадратов предполагает равноценность исходной информации в модели. Метод наименьших квадратов широко применяется в прогнозировании в силу его простоты и возможности реализации на ЭВМ.
Метод экспоненциального сглаживания дает возможность получить оценку параметров тренда, характеризующих не средний уровень процесса, а тенденцию, сложившуюся к моменту последнего наблюдения, то есть он позволяет оценить параметры модели, описывающей тенденцию, которая сформировалась в конце базисного периода, и тем самым не просто экстраполирует действующие зависимости в будущее, а приспосабливается, адаптируется к изменяющимся во времени условиям.
Метод скользящей средней дает возможность выравнивать динамический ряд путем его расчленения на равные части с обязательным совпадением в каждой из них сумм модельных и эмпирических значений.
Толчком к развитию формализованных методов, и в том числе методов моделирования, послужило применение электронно-вычислительных машин (ЭВМ). В их развитии обозначился новый этап - этап экономико-математических методов (ЭММ), соединивших в себе математическую теорию и возможности ЭВМ.
Выделяют модели: макроэкономические, межотраслевые, межрайонные, отраслевые, региональные и микроэкономические (на уровне предприятия, объединения).
Экономико-математическая модель любого вида представляет собой формализованное описание исследуемого процесса или объекта в виде математических зависимостей и отношений.
Корреляционно-регрессионный метод дает возможность количественно исследовать влияние разнообразных факторов на уровень параметра, характеризующего планируемое (прогнозируемое) явление или процесс, позволяет отделить мнимые связи от действительных и в математической форме (через уравнение регрессии) выразить эту связь и раскрыть действие факторов на этот параметр.
10 Методы прогнозной экстраполяции.
Метод экстраполяция - это метод научного исследования, заключающийся в распространение тенденций, установленных в прошлом, на будущий период.
В узком смысле слова экстраполяция - это нахождение по ряду данных функции других ее значений, находящихся вне этого ряда. Экстраполяция заключается в изучении сложившихся в прошлом и настоящем устойчивых тенденций экономического развития и перенесении их на будущее. В прогнозировании экстраполяция применяется при изучении временных рядов и представляет собой нахождение значений функции за пределами области ее определения с использованием информации о поведении данной функции в некоторых точках, принадлежащих области ее определения.
Различают перспективную и ретроспективную экстраполяцию. Перспективная экстраполяция предполагает продолжение уровней ряда динамики на будущее на основе выявленной закономерности изменения уровней в изучаемом отрезке времени. Ретроспективная экстраполяция характеризуется продолжением уровней ряда динамики в прошлое.
При разработке прогнозов с помощью экстраполяции исходят из статистически складывающихся тенденций изменения тех или иных количественных характеристик объекта. Экстраполируются оценочные, функциональные, системные и структурные характеристики, например, количественные характеристики экономического, научного, производственного потенциала. Степень реальности таких прогнозов в значительной мере обусловливается обоснованностью выбора пределов экстраполяции и соответствие выбранных «измерителей» сущности рассматриваемого явления.
Метод наименьших квадратов широко применяется в прогнозировании в силу его простоты и возможности реализации на ЭВМ.
Метод экспоненциального сглаживания временных рядов - этот метод является модификацией метода наименьших квадратов для анализа временных рядов, при которой более поздним наблюдениям придается больший вес, т.е. веса точек ряда убывают экспоненциально по мере удаления в прошлое. Этот метод позволяет оценить параметры модели, описывающей тенденцию, которая сформировалась в конце базисного периода и не просто экстраполирует действующие зависимости в будущее, а приспосабливает, адаптирует к изменяющимся во времени условиям.
Метод скользящей средней заключается в том, что вычисляется средний уровень из определенного числа первых по порядку уровней ряда, затем средний уровень из такого же числа уровней, начиная со второго, далее - начиная с третьего и т.д.
Метод аналитического выравнивания предполагает представление уровней данного ряда динамики в виде функции времени y=f(t). Для отображения основной тенденции развития явлений во времени применяются различные функции: полиномы степени, экспоненты, логистические кривые и другие виды.
Методы экстраполяции, основанные на продлении тенденций прошлого и настоящего на будущий период, могут использоваться в прогнозировании лишь при периоде упреждения до пяти - семи лет. Важнейшим условием применения является наличие устойчиво выраженных тенденций развития социально-экономического явления или процесса. При более длительных сроках прогноза эти методы не дают точных результатов.