Методы защиты от коррозии

I

В силу широчайшего использования различных металлических конструк-ций, аппаратов, приборов коррозионный процесс наносит огромный ущерб на-родному хозяйству. Любой вопрос новой техники сейчас же вызывает необходи-мость решения проблем в области корро-зии. Защита металлов от коррозии не-возможна без знания закономерностей течения этого процесса.

К о р р о з и я - это процесс самопроизвольного разрушения металлов вследствие их взаимодействия с окружающей средой.

Свободный металл (Ме) является термодинамически неустойчивой формой по сравне-нию с ионной (Ме+n) – ведь в природе металлы, как правило, встреча-ются не в самородном состоянии, а в виде минералов и руд (соли или оксиды ме-таллов).Этим и объясняется само-произвольное разрушение большинства метал-лов. Судить о степени термодинамической не-стабильности можно по величине стандартного электродного потенциала – чем отрицатель-нее эта величина, тем в большей степени металл будет подвержен коррозионному разруше-нию (см. таблицу).

Коррозионный процесс относится к окислительно-восстановительным и включает в себя две сопряженные реакции – окисление и восстановление, например Ме + Ок → Ме+n + Окn ,

где окисление: Ме − ne → Ме+n ;

восстановление: Ок + ne → Окn .

В зависимости от механизма протекания этих сопряженных реакций коррозия бывает химической или электрохимической.

Химическая коррозия подразумевает процесс взаимодействия металла с окружающей средой за счет гетерогенной химической реакции (атом металла непосредственно взаимо-действует с молекулой реагента и переходит в ионное состояние без переноса электрона через компактный металл). К химической коррозии относятся окисление металлов при вы-соких температурах в газовой атмосфере либо разрушение металла при его соприкоснове-нии с растворами неэлектролитов.

Электрохимическая коррозия протекает с разделением анодной (окисле-ние) и катодной (восстановление)реакций либо в пространстве (по поверхности), либо во времени (если они протекают в одной точке п оверхности). Возникает эта коррозия на границе раздела фаз «металл - электролит» и сопровождается перемещением электронов с одних участков ме-талла к другим, т.е. появлением электрического тока. К ней относят:

- атмосферную коррозию во влажной газовой или воздушной атмосфере;

- подземную коррозию;

- жидкостную коррозию;

- электрокоррозию под действием блуждающих токов и др.

В зависимости от характера разрушений, сопровождающих процесс элект-рохимической коррозии, различают с п л о ш н у ю коррозию, захватывающую всю поверхность металла, и м е с т н у ю, локализующуюся на отдельных участках:

- коррозия пятнами (диаметр поражения велик по сравнению с его глубиной);

- язвенная коррозия (диаметр поражения мал, велика глубина проникновения);

- питтинговая коррозия (точечное поражение, проходящее часто через всю толщу металла) и др.

Скорость коррозии может быть выражена различными способами, однако чаще пользуются весовым, глубинным и токовым показателями.

Весовой или массовый показатель скорости коррозии численно равен потере массы за единицу времени, отнесенную к единице площади:

Методы защиты от коррозии - student2.ru кор = ∆ m/τ•S (г/см2 ч).

Глубинный показатель оценивает скорость коррозии по глубине проник-новения коррозионного разрушения в толщу металла за определенный проме-жуток времени: Пгл (мм/год).

Токовый показатель - плотность тока: i (А/см2).

Стандартные электродные потенциалы некоторых металлов (Е) и общая термодинамическая характеристика их коррозионной стойкости по отношению к водным растворам

Термодинамическая стабильность металла Металл и его электродный потенциал (Е, В)
1. Металлы повышенной нестабильности (неблагородные). Могут корродировать даже в нейтральных средах, не содержащих окислителей Li (-3,045) Na (-2,714) Cr(II)(-0.913) K (-2,925) Mg (-2,370) Zn (-0,762) Ba(-2,900) Be (-1,850) Cr(III)(-0,740) Ca(-2,870) Al (-1,670) Fe(II)(-0,440)
2. Металлы нестабильные. Устойчивы в ней-тральных средах при отсутствии кислорода, в кислых средах могут корродировать и в от-сутствие кислорода Cd (-0,402) Pb (-0,126) Co (-0,277) Fe(III) (-0,037) Ni (-0,250) Sn(II) (-0,136)
3. Металлы промежуточной стабильности (полублагородные). В отсутствие О2 и окис-лителей устойчивы в кислых и нейтральных средах Sn(IV) (+0,007) Ag (+0,799) Cu(II) (+0,337) Cu(I) (+0,521) Hg(I) (+789)
4. Металлы высокой стабильности (благород-ные) не корродируют в нейтральных средах при наличии О2. Могут корродировать в кислых средах при наличии О2 или окислителей Hg(II) (+0,854) Pd (II) (+0,987) Ir (II) (+1,156) Pt (III) (+1,190)
5. Металлы полной стабильности. Устойчивы в кислых средах при наличии О2 . Могут растворяться в комплексообразователях при наличии окислителей Au (III) (+1,500) Au(I) (+1,680)

Рассмотрим электрохимическую коррозию на примере действия серной кислоты на технический цинк, содержащий примеси железа. В этом случае на поверхности цинка возникает множество микрогальванопар, в которых цинк яв-ляется анодом (т.к. электродный потенциал цинка (-0,762 В) отрицательнее электродного потенциала железа (-0,44 В), а железо – катодом. Анодный про-цесс в этом случае – окисление цинка, катодный – восстановление окислителя, присутствующего в электролите (катионы водорода):

на аноде Zn - 2e = Zn+2 ионизация цинка (окисление);

на катоде 2Н+ + 2e = Н2↑ восстановление катионов водорода.

Поверхность цинка (анод) разрушается, высвободившиеся электроны перетека-ют к включениям железа (катод), на которых выделяется газообразный водород.

Помимо электрохимического растворения цинк может растворяться и в результате химического процесса: Zn + 2Н+ = Zn+2 + Н2↑ . Однако опыт показывает, что скорость растворения цинка в этом случае значительно ниже, чем скорость ионизации цинка как анода гальванопары. Вторичный процесс обусловлен взаимодействием образовавшихся катионов металла и кислотного остатка, присутствующего в электролите: Zn+2 + SO4-2 =ZnSO4. Таким обра-зом протекает коррозионный процесс в кислых средах.

Течение коррозионного процесса в нейтральных средах отличается от вышерассмотренного. Например: коррозия технического железа, покрытого пленкой влаги, на воздухе или электролите с нейтральной реакцией среды. Анодный процесс аналогичен – ионизируется металл; на катоде в этом случае восстанавливаются молекулы кислорода, растворенного в воде:

на аноде Fe - 2e = Fe+2 ионизация железа (окисление);

на катоде О2 + 2Н2О + 4е = 4ОН- восстановление кислорода.

Возможные вторичные процессы:

Fe+2 + 2ОН- = Fe(ОН)2, 4 Fe(ОН)2 + О2 + 2Н2О = 4Fe(ОН)3 .

Нередко продукты коррозии оказываются малорастворимыми и своим при-сутствием на поверхности металла защищают его от дальнейшего разрушения – пассивируют металл. Это могут быть оксиды, гидроксиды, соли.

П а с с и в а ц и е й или пассивностью металла называется такое его сос-тояние, в каком он не подвергается коррозионному разрушению. Это состояние может быть достигнуто как за счет действия соответствующих окислителей, так и в случае анодной поляризации. Целый ряд металлов уже в естественных усло-виях имеет на своей поверхности оксидную пленку, которая надежно защищает от воздействия агрессивных агентов окружающей среды. Такие металлы называ-ются самопассивирующимися. К ним относятся: алюминий (с термодинамической точки зрения активный металл, но за счет поверхностной оксидной пленки коррозионностойкий), титан, ванадий, молибден, хром, никель и др.

II

Каждая шестая доменная печь работает на коррозию - таков итог действия коррозии, приводящей к разрушению конструкций, понижению качества продук ции, а также к авариям и несчастным случаям на производстве. Это наносит на-родному хозяйству огромный ущерб.

Любой метод защиты изменяет ход коррозионного процесса, уменьшая его скорость. Однако, выбирая способ защиты металла, необходимо учитывать кон-роль коррозионного процесса.

Разрушение металла - совместное протекание двух процессов: окисления (анодный процесс) и восстановления (катодный процесс) и общая скорость кор-розии определяется скоростью более медленнотекущего процесса (медленно текущая реакция называется л и м и т и р у ю щ е й). Катодный контролькоррозионного процесса имеет место, если лимитирующей является катодная реакция. Анодный контроль -если лимитирующей является анодная реак-ция. При выборе метода защиты это необходимо учитывать. Если разрушение металла протекает с анодным контролем, необходимо подобрать метод защиты усиливающий анодную поляризацию. Если разрушение металла протекает с ка-тодным контролем - метод усиливающий катодную поляризацию. Напомним, что п о л я р и з а ц и е й называется смещение потенциала электрода при протекании через систему электрического тока. Анодная поляризация - сме- щение потенциала в положительную сторону. Нижеприведенные иаграммы ил-люстрируют снижение скорости коррозии при усилении анодной (рис. 1) и катодной (рис. 2) поляризации.

Методы защиты от коррозии - student2.ru Методы защиты от коррозии - student2.ru

Рис. 1. Анодный контроль Рис. 2. Катодный контроль

Все методы защиты условно делятся на четыре группы:

1) электрохимические методы;

2) методы, связанные с изменением свойств корродирующего металла;

3) методы, связанные с изменением свойств коррозионной среды;

4) комбинированные методы.

Электрохимические методы защиты основаны на изменении электро- химических свойств металла под действием поляризующего тока. Катодная защита применяется для повышения коррозионной стойкости металлов в ус-ловиях почвенной, морской коррозии, при контакте металла с агрессивными хи-мическими средами. Защита обеспечивается в этом случае наложением тока от внешнего источника питания (защищаемая поверхность соединяется с отрица-тельным полюсом этого источника) - на защищаемой поверхности протекают только восстановительные процессы. Протекторная защита ( частный слу-чай катодной защиты) - создание макрогальванической пары с менее благород-ным металлом-протектором. П р о т е к т о р играет роль анода и растворяется со скоростью, достаточной для создания в системе тока необходимой силы. В качестве протектора могут быть использованы цинк, алюминий, магний и их сплавы. Анодная защитаприменима к металлам и сплавам, способных пасси-вироваться при смещении их электродного потенциала в положительную сторо-ну и достижения состояния полной пассивации (здесь защищаемая поверхность соединяется с положительным полюсом внешнего источника питания). Элек-трохимические методы защиты можно использовать только в хорошо проводи- мой среде - в морской воде, почве, растворах электролитов.

Группа методов защиты,основанная на изменении свойств металлов, осуществляется либо специальной обработкой их поверхности, либо легированием. Легированиемназыва-ется введение в защищаемый металллегирующих эле-ментов, повышающих термодинамическую устойчивость анодной фазы (напри-мер: легирование стали – никелем, никеля – медью, меди – золотом и т. д.), либо содействующих пассивированию анодной фазы (легирование сталей хро-мом или кремнием, никеля – хромом). Кроме того, для увеличения коррозионной стойкости металлов широко используются различные покрытия. Предназначение защитного покрытия - создание барьерного слоя, препятствующе-го проникновению коррозионной среды к поверхности металла. Материал пок-рытия прежде всего должен обладать высокой химической устойчивостью, сла- бой проницаемостью для воды, газов, агрессивных ионов (Cl-, SO4-2), хорошей адгезией к металлу, механической прочностью и др. Покрытия делятся на две группы: металлические и неметаллические. Неметаллические покрытия, в свою очередь,бывают неорганические (оксидные, солевые, силикатные, асбоце-

ментные и др.) и органические (лакокрасочные, битумные, резиновые, поли-мерные). Металлические покрытиябывают анодными и катодными. Анодное металлическое покрытие имеет место в случае нанесения на защищаемый металл другого металла с более отрицательным электродным потенциалом, например, железо (-0,44 В), покрытое цинком (-0,76 В). Катодное металли-ческое покрытие - на защищаемый металл наносят другой металл с более положительным электродным потенциалом, например, железо (-0,44 В),покртое медью (+0,345 В). Если нарушается целостность защитного металлического покрытия в процессе эксплуатации, начинают работать гальванопары. В случае анодного покрытия - разрушается металл покрытия (анод), защищаемый металл (катод) остается без изменения. В случае катодного покрытия – разрушается защищаемый металл (анод, т.к. его электродный потенциал отрицательнее по-тенциала покрытия), металл покрытия (катод) не изменяется.

Для повышения защитного эффекта часто используют системы из не-скольких покрытий: фосфатное покрытие перед нанесением лакокрасочного, цинковое покрытие с последующим фосфатированием и нанесением лака, мно- гослойные металлические покрытия, лакокрасочные покрытия с наполнителем из металлического порошка и др.

Скорость коррозии можно уменьшить также изменением свойств корро-зионной среды, в результате которой уменьшается ее агрессивность, или введением в коррозионную среду небольших добавок замедлителей коррозии - ингибиторов. Обработка среды заключается в уменьшении влажности и запы-ленности воздуха производственного помещения, деаэрировании (уменьшении концентрации кислорода) жидких сред и т. д. Ингибиторы коррозии в зависимости от условий их применения делят на летучие и жидкостные, кото-рые, в свою очередь, бывают кислотные, щелочные и нейтральные (замедля-ющие скорость коррозии соответственно в кислых, щелочных или нейтраль-ных средах). Ингибиторы широко исполь-зуются для защиты от разрушений внешних и внутренних поверхностей труб и аппаратов, в циркуляционных охла-дительных системах, коммуникационных системах, в различных емкостях для хранения жидких продуктов и др.Их большое преимущество состоит в том, что они пригодны при защите уже пораженных коррозией систем без замены мате-риала или конструкции. Механизм действия ингибиторов обусловлен их ад-сорбцией на границе раздела «металл – коррозионная среда». Защитное дейст-вие ингибитора тем больше, чем больше размер ингибирующей молекулы. Кро-ме того, защитный эффект наступает при более низких концентрациях, если мо-лекулы ингибитора полярны, чем в случае неполярных молекул. Здесь, при растворении ингибитора образуются положительно заряженные ионы. При рас-творении металла его положительно заряженные ионы переходят в раствор, а на поверхности металла скапливается избыток отрицательных зарядов. Отрица-тельно заряженная поверхность металла притягивает положительные ионы ингибитора, которые адсорбируясь блокируют дальнейшее его растворение. В настоящее время в качестве ингибиторов используются глицерин (СН2ОН-СНОН- СН2ОН), ацетальдегид (СН3СОН), анилин (С6Н62), уротропин и многие другие.

Вяжущие вещества.

Коррозия бетонов

Вяжущие вещества

1.1. Классификация вяжущих веществ

Вяжущими веществами называют материалы, способные в определенных условиях образовывать пластично-вязкое тесто, которое самопроизвольно или под действием определенных факторов с течением времени затвердевает. Переходя из пластично-вязкого состояния в камневидное, вяжущие вещества могут скреплять между собой зерна песка и гравия, кирпич, блоки; кроме того можно получать искусственный камень заданной формы. В наше время известна широкая гамма разнообразных вяжущих веществ, которые широко применяются в строительстве.

* В зависимости от природы они подразделяются на две группы:

Таблица 1

1. Неорганические вяжущие
    Воздушного твердения   Воздушная известь
Строительный гипс
Магнезиальные вяжущие
  Гидравлического твердения Портландцемент
Глиноземистый цемент
Романцемент
  Автоклавного твердения Известково-кремнеземистые вяжущие
Известково-нифелиновые вяжущие
Песчанистый портландцемент
2. Органические вяжущие
Битумы
Асфальты
Полимеры
Клеи

Неорганические строительные вяжущие вещества - порошкообразные материалы - для перевода в рабочее состояние затворяют водой, реже водными растворами солей.

Органические вяжущие переводят в рабочее состояние нагревая их или смешивая с органическим растворителем.

* Важным показателем вяжущих является их отношение к воздействию воды. По этому признаку их делят на воздушные и гидравлические:

- воздушные вяжущие способны твердеть и длительно сохранять прочность только в воздушной среде;

- гидравлические вяжущие способны твердеть и длительное время сохранять прочность не только на воздухе, но и в воде.

Вяжущие автоклавного твердения способны твердеть только в среде насыщенного водяного пара при температуре 150-200 ºС и повышенном давлении (в автоклаве).

* Вяжущие вещества различают по скорости твердения:

- быстротвердеющие имеют период полного твердения до 3-х суток (строительный гипс, магнезиальный цемент);

- медленнотвердеющие – более 3-х суток (воздушная известь, портландцемент и др.).

Итак, в процессе работы с вяжущими веществами различают стадии:

1) затворение – приведение вяжущего в рабочее состояние;

2) схватывание - вяжущее теряет свои пластично-вязкие свойства:

А) начало схватывания характеризуется потерей тестом пластичности,

Б) конец схватывания – момент, когда тесто превращается в твердое тело, но не имеет еще значимой прочности. У простейших вяжущих (глина, известь), твердеющих в результате испарения воды, этап схватывания отсутствует.

3) полный набор прочности.

Рассмотрим, какие превращения имеют место в процессе твердения некоторых вяжущих веществ.

Наши рекомендации