Дифференциального кинетического уравнения

Определим константы дифференциального кинетического уравнения для следующей реакции:

аА + bB → продукты.

Зависимость скорости от концентраций выражается уравнением (4.3):

Дифференциального кинетического уравнения - student2.ru .

Прологарифмируем это выражение

Дифференциального кинетического уравнения - student2.ru . (4.4)

Так как величины k, n и m для рассматриваемой реакции (при T=const) являются постоянными и не зависят от концентрации реагентов, то для их нахождения достаточно определить зависимость скорости реакции от концентрации одного из реагентов при фиксированной концентрации другого реагента.

Пусть в трех опытах концентрация вещества А будет постоянной и равной [A]0.

Тогда в уравнении (4.4) сумма ( Дифференциального кинетического уравнения - student2.ru ) будет тоже величиной постоянной.

Обозначим ее Дифференциального кинетического уравнения - student2.ru .

Тогда уравнение (4.4) можно переписать как

Дифференциального кинетического уравнения - student2.ru . (4.5)

Зависимость (4.5) представляет собой в координатах ln[B] – Дифференциального кинетического уравнения - student2.ru уравнение прямой линии, тангенс угла наклона которой к оси абсцисс численно равен порядку реакции по веществу В.

По экспериментальным данным строят график зависимости Дифференциального кинетического уравнения - student2.ru от ln[B] (рис. 4.2) и находят порядок реакции по веществу B

Дифференциального кинетического уравнения - student2.ru.

В последующих опытах определяют скорость реакции при различных исходных концентрациях вещества А и постоянной концентрации [B]0.

Находят порядок реакции по веществу А

Дифференциального кинетического уравнения - student2.ru.

Из уравнения (4.3) с учетом найденных порядков реакции по веществам А и В рассчитывают константу скорости

Дифференциального кинетического уравнения - student2.ru ,

где Дифференциального кинетического уравнения - student2.ru , [A]i, [B]i – экспериментальные данные, относящиеся к одному опыту.

Дифференциального кинетического уравнения - student2.ru

Рис. 4.2. Определение порядка реакции по веществу В

Зависимость концентрации реагирующих веществ

От времени для реакции первого порядка.

Интегральное кинетическое уравнение

На практике чаще всего интересует не само значение скорости химической реакции, а то, сколько вещества израсходовано или образовалось к определенному моменту времени после начала реакции.

Рассмотрим эту задачу на примере реакции первого порядка:

А ® продукты.

Скорость такой реакции выражается следующим уравнением:

Дифференциального кинетического уравнения - student2.ru . (4.6)

В дифференциальном виде

Дифференциального кинетического уравнения - student2.ru . (4.7)

Перепишем это уравнение в следующем виде:

Дифференциального кинетического уравнения - student2.ru

и возьмем определенный интеграл от обеих частей уравнения от исходного состояния ([A]0, t0 = 0) до текущего момента ([A]t, t):

Дифференциального кинетического уравнения - student2.ru Дифференциального кинетического уравнения - student2.ru .

Решение этого уравнения приводит к следующей зависимости:

Дифференциального кинетического уравнения - student2.ru (4.8)

или

Дифференциального кинетического уравнения - student2.ru . (4.9)

Соотношения (4.8) и (4.9) являются интегральными кинетическими уравнениями реакции первого порядка.

Зная исходную концентрацию вещества [A]0 и константу скорости реакции k, можно рассчитать концентрацию [A]t через любое время t после начала реакции.

Если же известны исходная концентрация [A]0 и концентрация реагирующего вещества [A]t через какое-то время t после начала реакции, то можно рассчитать константу скорости этой реакции

Наши рекомендации