Энергия связи С—С, кДж/моль: 335; 322; 314; 310; 314; 322; 335

Энергия связи С—Н, кДж/моль: 394; 373; 364; 360; 360; 364; 373; 394

С повышением температуры различие в прочности связей С—С уменьшается. При умеренной температуре (400–500°С) разрыв углеводородной цепи происходит посередине, по наиболее слабым связям. С повышением температуры может происходить разрыв и других связей.

Связи С—С в циклоалканах несколько менее прочны, чем в нормальных алканах: в циклогексане — на 8 кДж/моль, в циклопентане — на 25 кДж/моль.

Связи С—С и С—Н в алкенах у атома углерода с двойной связью значительно прочнее, а в 5-положении — сильно ослабле­ны по сравнению с алканами (цифры означают энергию связи в кДж/моль):

H H

375 | | 321

R – CH2 – CH2 – C – C – CH = CH2

334 |259| 371

H H

Энергия раскрытия π-связи в алкене при сохранений σ-связи равна 239 кДж/моль:

• •

СН2=СН2 ® СН2СН2 — 239 кДж/моль

Если двойная связь является сопряженной, то энергия раскры­тия π-связи примерно на 50 кДж/моль меньше:

• •

СН2=СН—СН=СН2 ® СН2=СН— СН—СН2 — 188 кДж/моль

В аренах связи С—Н и С—С прочнее, чем связи С—Н и С—С в алканах, а связи, сопряженные с ароматическим кольцом, ос­лаблены. Сопряжение с кольцом понижает прочность связи при­мерно в той же мере, как и сопряжение с двойной связью.

Реакции радикалов. Радикалы, являясь химически ненасыщен­ными частицами, обладают высокой реакционной способностью и вступают в различные реакции с очень большой скоростью. По активности радикалы можно расположить в ряд:

. . . . . . . .

C2H3>CH3=C3H7=втор-C4H9>C6H5 >C2H5>трет-C4H9>C6H5CH2>CH2=CHCH2>

.

(C6H5)2CH.

Различают следующие реакции радикалов:

1) моно- и бимолекулярную диссоциацию молекул на два свободных радикала (инициирование цепи)

• •

С2Н6 ® СН3 + СН3

C2H6 + C2H4 ® 2С2Н5

2) замещение

• •

CH3 + C2H6 ® CH4 + C2H5

3) распад радикалов с образованием ненасыщенных молекул
и новых свободных радикалов; распад протекает преимуществен-­
но по β-связи по отношению к атому углерода с неспаренным
электроном (β -правило)

• •

СН3СН2СНСН3 —> СН2=СНСН3 + СН3

4) присоединение радикалов по кратной связи (реакция, обратная предыдущей)

• •

СН3 + С2Н4 ® С3Н7

5) изомеризация свободных радикалов. Предполагают, что
изомеризация протекает через циклическое переходное состояние

CH2CH2CH2CH2CH2CH2CH3 « Энергия связи С—С, кДж/моль: 335; 322; 314; 310; 314; 322; 335 - student2.ru «CH3CH2CH2CH2CH2CHCH3

Легче образуются 6-членные циклы, труднее 5- и 7-членные, 3- и 4-членные циклы слишком напряжены, поэтому 1,2- и 1,3-изомеризация алкильных радикалов практически неосуществима.

Обрыв цепи. Осуществляется следующими реакциями:

6) рекомбинацией радикалов

• •

СН3 + СН3 ® С2Н6

7) диспропорционированием

• •

СН3 + С2Н5 ® СН4 + С2Н4

Как уже было отмечено выше, энергия активации реакции 1) —инициирования цепи — определяется энергией связи С—С в углеводороде. β-распад крупных радикалов (С3 и выше) — ре­акция 3) — протекает с энергией активации 110–170 кДж/моль. Взаимодействие относительно устойчивых метальных и этильных радикалов и атомов водорода с исходными молекулами-реакция 2) — требует энергии активации всего 25–37 кДж/моль. Энергия активации реакций обрыва цепи — рекомбинации 6) и диспропорционирования 7) — равна 0. Энергия активации суммарной цеп­ной реакции для бутана составляет 245 кДж/моль.

Реакции термического разложения обычно описываются уравнениями первого порядка. Однако четкое математическое описа­ние всего комплекса термических реакций не представляется по­ка возможным ввиду того, что крекинг и пиролиз даже простей­ших углеводородов включает множество элементарных актов. Кроме того, на кинетику цепной реакции крекинга оказывают влияние продукты реакции.

Термические превращения углеводородов в газовой фазе

Превращения алканов

Термодинамически возможны следующие реакции алканов:

  T, К
Дегидрирование С2—С10 ≥1000
Циклизация С6 ® цикло-С6 + Н2 ≥1100
С10 ® цикло-С10 + Н2 ≥800
Ароматизация С6—С10 ≥630
Крекинг С3—С10 ≥ 600—700

Экспериментальные данные по составу продуктов термического распада алканов хорошо объясняются радикально-цепным меха­низ-мом реакции. Крекинг бутана, например, можно представить следующей схемой.

Вначале за счет разрыва связи С—С в наиболее слабом ме­сте образуются первичные свободные радикалы (инициирование цепи):

Энергия связи С—С, кДж/моль: 335; 322; 314; 310; 314; 322; 335 - student2.ru Энергия связи С—С, кДж/моль: 335; 322; 314; 310; 314; 322; 335 - student2.ru 2СН3СН2

Энергия связи С—С, кДж/моль: 335; 322; 314; 310; 314; 322; 335 - student2.ru СН3СН2СН2СН3 • •

Энергия связи С—С, кДж/моль: 335; 322; 314; 310; 314; 322; 335 - student2.ru СН3 + СН3СН2СН2

Затем процесс развивается по двум возможным направлени­ям. Крупные, относительно неустойчивые радикалы (С3 и выше) самопроизвольно распадаются по β-правилу с образованием бо­лее устойчивых метильных и этильных радикалов или атомов водо­рода и соответствующих молекул алкенов:

• •

Энергия связи С—С, кДж/моль: 335; 322; 314; 310; 314; 322; 335 - student2.ru Энергия связи С—С, кДж/моль: 335; 322; 314; 310; 314; 322; 335 - student2.ru (СН3СН=СН2) + Н

Энергия связи С—С, кДж/моль: 335; 322; 314; 310; 314; 322; 335 - student2.ru СН3СН2С·Н2

Энергия связи С—С, кДж/моль: 335; 322; 314; 310; 314; 322; 335 - student2.ru

(СН2=СН2) + СН3

(в скобках — конечные продукты).

Устойчивые в отношении распада, но чрезвычайно реакционноспособные метальные и этильные радикалы и атомы водорода вступают в реакцию с исходными молекулами, отрывая от них атом водорода:

• •

H + С4H10 ® (H2) + С4Н9

• •

CH3 + C4H10 ® (CH4) + C4H9

• •

СН3СН24Н10 ® (СН3СН3) + C4H9

В результате образуются водород, метан, этан и вторичные бутильные радикалы. Образование первичных бутильных радикалов менее вероятно. Прочность С—Н-связи при первичном угле­родном атоме выше, чем при вторичном. При 600°С вероятности отрыва радикалом от молекулы исходного вещества первичного, вторичного или третичного атомов водорода соотносятся как 1:2:10. В бутане шесть первичных атомов водорода и четыре вторич­ных; таким образом, вероятности образования первичных и вто­ричных бутильных радикалов относятся как (6 х 1) : (4 х 2) = 3 : 4.

Бутильные радикалы далее распадаются по β-правилу, а об­разующиеся при этом мелкие радикалы снова реагируют с исход­ными молекулами. Развивается цепной процесс. Обрыв цепи про­исходит в результате реакций рекомбинации и диспропорционирования.

Наши рекомендации