Метаболизм аминокислот
Помимо синтеза белков аминокислоты еще используются для синтеза различных небелковых соединений, имеющих важное биологическое значение. Часть аминокислот подвергается распаду и превращается в конечные продукты: С02, Н20 и NН3 Распад начинается с реакций, общих для большинства аминокислот.
К ним относятся:
а) декарбоксилирование - отщепление от аминокислот карбоксильной группы в виде углекислого газа:
Трансаминированию подвергаются все аминокислоты. В этой реакции участвует кофермент - фосфопиридоксаль, для образования которого необходим витамин В6 - пиридоксин.
Трансаминирование - это главное превращение аминокислот в организме, так как его скорость значительно выше, чем у реакций декар-боксилирования и дезаминирования.
Трансаминирование выполняет две основные функции:
а) за счет трансаминирования одни аминокислоты могут превращаться в другие. При этом общее количество аминокислот не меняется, но изменяется соотношение между ними. С пищей в организм посту пают чужеродные белки, у которых аминокислоты находятся в иных пропорциях по сравнению с белками организма. Путем трансаминирования происходит корректировка аминокислотного состава организма.
б) является составной частью косвенного (непрямого) дезаминированияаминокислот - процесса, с которого начинается распад большинства аминокислот.
На первой стадии этого процесса аминокислоты вступают в реакцию трансаминирования с α-кетоглутаровой кислотой. Аминокислоты при этом превращаются в α-кетокислоты, а α-кетоглутаровая кислота переходит в глутаминовую кислоту (аминокислота).
На второй стадии появившаяся глутаминовая кислота подвергается дезаминированию, от нее отщепляется NН3 и снова образуется α-кетоглутаровая кислота. Образовавшиеся α-кетокислоты далее подвергаются глубокому распаду и превращаются в конечные продукты С02 и Н20. Для каждой из 20 кетокислоr (их образуется столько же, сколько имеется видов аминокислот) имеются свои специфические пути распада. Однако при распаде некоторых аминокислот в качестве промежуточного продукта образуется пировиноградная кислота, из которой возможен синтез глюкозы. Поэтому аминокислоты, из которых возникают такие кетокислоты, получили название глюкогенные.Другие же кетокислоты при своем распаде не образуют пирувата. Промежуточным продуктом у них является ацетилкофермент А, из которого невозможно получить глюкозу, но зато могут синтезироваться кетоновые тела. Аминокислоты, соответствующие таким кетокислотам, называются кетогенные.
Второй продукт косвенного дезаминирования аминокислот - аммиак. Для организма аммиак является высокотоксичным. Поэтому в организме имеются молекулярные механизмы его обезвреживания. По мере образования NН3 связывается во всех тканях с глутаминовой кислотой с образованием глутамина. Это временное обезвреживание аммиака.С током крови глутамин поступает в печень, где распадается опять на глутаминовую кислоту и NНз. Образовавшаяся глутаминовая кислота с кровью снова поступает в органы для обезвреживания новых порций аммиака. Освободившийся аммиак, а также углекислый газ в печени используются для синтеза мочевины.
Синтез мочевины - циклический, многостадийный процесс, потребляющий большое количество энергии. В синтезе мочевины очень важное участие принимает аминокислота орнитин. Эта аминокислота не входит в состав белков. Образуется орнитин из другой аминокислоты - аргинина,который присутствует в белках. В связи с важной ролью орнитина синтез мочевины получил название орнитиновый цикл.
Впроцессе синтеза к орнитину присоединяются две молекулы аммиака и молекула углекислого газа, и орнитин превращается в аргинин, от которого сразу же отщепляется мочевина, и вновь образуется орнитин. Наряду с орнитином и аргинином в образовании мочевины еще участвуют аминокислоты: глутамини аспарагиновая кислота.Глутамин является поставщиком аммиака, а аспарагиновая кислота его переносчиком.
Синтез мочевины - это окончательное обезвреживание аммиака.Из печени с кровью мочевина поступает в почки и выделяется с мочой. В сутки образуется 20-35 г мочевины. Выделение мочевины с мочой характеризует скорость распада белков в организме.
Раздел 3. Биохимия мышечной ткани
Лекция 5. Биохимия мышц