Реакции, при которых меняется заряд ядра. Ускорители и возможности синтеза новых элементов
В ядерном реакторе с нейтронами в несколько МэВ могут проходить реакции (n,p) и (n,a).Таким путем образуются четыре важнейших радиоактивных изотопа 14C, 32P, 35S и 3H по реакциям:
14N(n,p) 14C; 32S(n,p) 32P; 35Cl(n,a) 35S; 6Li(n,a) 3H
Во всех перечисленных случаях из элемента мишени образуется радиоактивный изотоп другого химического элемента и тем самым появляется возможность выделения этих изотопов без носителя или с заданной радиоактивностью.
Для получения радионуклидов, кроме ядерных реакторов, находят широкое применение и другие источники бомбардирующих частиц и гамма - квантов, работа которых основана на протекании различных ядерных реакций. Мощные потоки заряженных частиц получают с помощью ускорителей (электростатических, линейных и циклотронов и др.), в которых заряженные частицы ускоряются под действием постоянных или переменных полей. В электростатических и линейных ускорителях частицы разгоняются одним электрическим полем, в циклотронах одновременно с электрическим действует и магнитное поле.
Рис. Синхрофазотрон
Для получения нейтронов с высокой энергией служат нейтронные генераторы, в которых используются ядерные реакции под действием заряженных частиц, чаще всего дейтронов (d, n ) или протонов ( p, n).
С помощью ускорителей в основном получают радионуклиды с разными Z.
С ускорителями связан прогресс последних лет в синтезе новых химических элементов. Так облучением в циклотроне альфа-частицами с энергией 41 МэВ и плотностью пучка 6×1012 частиц/с энштейния были получены первые 17 атомов менделевия:
Es (a, n) Md
В дальнейшем это дало толчок к интенсивному развитию метода ускорения многозарядных ионов. Бомбардировкой урана-238 в циклотроне ионами углерода был получен калифорний:
U ( С6+, 6n) Cf
Однако легкие снаряды ионы углерода или кислорода - позволили продвинуться только до элементов 104-10. Со временем для синтеза более тяжелых ядер облучением стабильных изотопов свинца и висмута ионами хрома были получены изотопы с порядковыми номерами 106 и 107:
Pb ( Cr, 3n) Sg
209 83B ( Cr, 2n) Bh
В 1985 г. в Дубне был получен альфа-активный элемент 108 –хассий (Hs) облучением Cf неоном-22:
Cf ( Ne +4n) Hs
В этом же году в лаборатории Г. Сиборга были синтезированы 109 и 110 элементы облучением урана-235 ядрами аргона 40.
Синтез дальнейших элементов осуществлялся путем бомбардировки U, кюрия-248, Es ядрами Са.
Синтез 114-го элемента был осуществлен в 1999 г. в Дубне путем слияния ядер кальция-48 и плутония-244. Новое, сверхтяжелое ядро охлаждается, испуская 3-4 нейтрона, а затем распадается путем испускания альфа-частиц до 110 элемента.
Для синтеза 116 элемента была проведена реакция слияния кюрия-248 с кальцием –48. В 2000 году три раза было зарегистрировано образование и распад 116-го элемента. Затем примерно через 0,05 с ядро элемента 116 распадается до 114 элемента и дальше следует цепочка из альфа-распадов до 110 элемента, который спонтанно распадается.
Периоды полураспада синтезируемых спонтанно распадающихся новых элементов составляли несколько микросекунд. Казалось бы, что продолжение синтеза более тяжелых элементов становится бессмысленным, так как время их существования и выход слишком малы. В то же время обнаруженные периоды полураспада этих элементов оказались гораздо больше ожидаемых. Поэтому можно предположить, что при некотором сочетании протонов и нейтронов должны получатся устойчивые ядра с периодами полураспада много тысяч лет.
И так, получение изотопов, отсутствующих в природе - задача чисто техническая, так как теоретически вопрос ясен. Нужно взять мишень, облучить ее потоком бомбардирующих частиц с соответствующей энергией и быстро выделить нужный изотоп. Однако подобрать подходящую мишень, бомбардирующие частицы оказывается не так легко.