Удк 620.22
Материаловедение. Методическое указание к лабораторной работе «Анализ диаграммы состояния железо-углерод» для студентов всех специальностей дневной и заочной форм обучения / Сост.: В.Н. Киприянова, С.А. Кобзева; Кубанский гос. технол. ун-т. Каф. материаловедения и автосервиса. – Краснодар: Изд. КубГТУ, 2008 – 11 с.
Изложены теоретические основы и методика проведения лабораторной работы «Анализ диаграммы состояния железо-углерод».
Печатается по решению методического совета Кубанского государственного технологического университета
Рецензенты: канд. техн. наук, доц. А.Г. Соколов
канд. техн. наук, проф. Ю.А. Кабанков
АНАЛИЗ ДИАГРАММЫ СОСТОЯНИЯ ЖЕЛЕЗО – углерод
Цель работы – изучить диаграмму состояния Fe – C и структурные превращения железоуглеродистых сплавов.
Задание и порядок выполнения работы
1. Ознакомиться с основными теоретическими положениями.
2. Дать описание основных линий, точек, фаз и структурных составляющих диаграммы состояния железо – цементит.
3. Вычертить диаграмму состояния в масштабе с принятым обозначением точек, температур, концентраций углерода и обозначить структуры во всех областях диаграммы.
4. Научиться определять концентрации углерода в фазах при различных температурах и количественные соотношения фаз, используя правило отрезков.
5. Построить кривые охлаждения заданных сплавов с применением правила фаз, занести номера критических точек, числа степеней свободы, структуры на каждом участке кривой и превращения на горизонтальных участках.
Основы теории
Наиболее распространенными металлическими материалами являются сплавы железа и углерода – стали и чугуны. В сталях содержится менее 2,14%С, а в
чугунах – более 2,14%С. Диаграмма железо – углерод показывает фазовый состав и структуру железоуглеродистых сплавов (сталей и чугунов).
Рассмотрим компоненты системы железо – углерод и их взаимодействие.
Компоненты – вещества, образующие систему:
1. Железо – металл сероватого цвета, температура плавления 1539 ºС, плотность 7,68 г/см3. Железо имеет две полиморфные модификации: α и γ.
При температурах ниже 911ºС кристаллическая решетка железа – объемно центрированный куб (ОЦК). Эту модификацию называют α-железо. До температуры 768 ºС (точка Кюри) α-железо магнитно, выше – немагнитно. Его называют β – немагнитным или β – железом.
При нагреве железа объемно центрированная кубическая решетка при 911 ºС перестраивается в гранецентрированную кубическую (ГЦК). Эта модификация существует до 1392 ºС и называется γ-железом.
Выше 1392 °С и до температуры плавления вновь устойчивой является ОЦК- решетка, высокотемпературное α-железо обозначают также δ – железо.
Схематично полиморфные превращения железа при нагреве можно изобразить следующим образом:
2. Углерод – неметаллический элемент, плотность 2,5 г/см3, температура плавления 3500 ºС. Углерод в природе может существовать в двух полиморфных модификациях: алмаз и графит. В железоуглеродистых сплавах в свободном виде углерод находится в форме графита.
Углерод растворим в железе в жидком и твердом состояниях, может образовывать химическое соединение – цементит.
Практическое значение имеет часть диаграммы от железа до цементита. Эта изучаемая нами часть диаграммы (рис. 2), называется также диаграммой железо – цементит (Fе – Fe3C).
Фазы. Фаза – однородная часть системы, отделенная от других частей (фаз) поверхностью раздела, при переходе через которую строение, состав и свойства изменяются скачкообразно. В системе железо – углерод различают следующие фазы: жидкий расплав, феррит, аустенит, цементит; рассмотрим подробнее.
|
|
Свойства феррита близки к свойствам железа. Он мягок и пластичен, магнитен до 768o С.
|
2. Аустенит – твердый раствор углерода в g-железе.
Атом углерода располагается в центре элементарной ячейки. Предельная растворимость углерода в g-железе– 2,14% при температуре 1147 ºС (точка Е).
Аустенит высокопластичен, но более тверд, чем феррит.
3. Цементит – химическое соединение железа с углеродом – карбид железа Fe3C.
В цементите содержится 6,67% (концентрация углерода при изменении температуры остается неизменной, в отличие от твердых растворов). Температура плавления цементита около 1600 ºС. Имеет сложную ромбическую решетку. Цементит – неустойчивое химическое соединение и в определенных условиях распадается с образованием свободного углерода в виде графита.
Цементит самая твердая и хрупкая составляющая железоуглеродистых сплавов (твердость более 800 НВ, δ=0%).
В железоуглеродистых сплавах присутствуют фазы: цементит первичный (ЦI), цементит вторичный (ЦII), цементит третичный (ЦIII). Химические и физические свойства этих фаз одинаковы. Цементит первичный выделяется из жидкой фазы в виде крупных пластинчатых кристаллов. Цементит вторичный выделяется из аустенита и располагается в виде сетки вокруг зерен аустенита (при охлаждении – вокруг зерен перлита). Цементит третичный выделяется из феррита и в виде мелких включений располагается у границ ферритных зерен.
4. Жидкий расплав. Углерод растворяется в железе в жидком состоянии, образуя однородный жидкий расплав.
Кристаллизация сплавов
ABCD – линия ликвидус, ниже которой происходит кристаллизация сплавов.
AHJECF – линия солидус, линия окончания кристаллизации.
При содержании углерода в сплаве менее 0,51% кристаллизация начинается с выделения d-феррита; при 0,51 < %С < 4,3 с выделения аустенита; кристаллизация сплавов, содержащих 4,3 < %С < 6,67 начинается с выделения из расплава кристалликов цементита первичного.
В сплавах, содержащих до 0,1% С, кристаллизация заканчивается при температурах, соответствующих линии AH, с образованием d-феррита.
Сплавы, содержащие 0,1 < %С < 0,51 при температуре 1499°С испытывают перитектическое превращение:
ЖB + ФН ® АJ
Линия HJB – линия перитектических превращений.
При содержании углерода от 0,1% до 0,16%, то есть между т. Н и J, недостаточно жидкости для реакции со всем имеющимся количеством феррита. Поэтому после окончания реакции остается избыточный феррит, который с понижением температуры вплоть до линии JN переходит в аустенит.
Рис. 2. Диаграмма состояния железо – углерод.
При содержании углерода от 0,16%, до 0,51%, то есть между т. J и В, количество феррита недостаточно для реакции со всем имеющимся количеством жидкости. Поэтому после окончания реакции остается избыточная жидкость, которая с понижением температуры вплоть до линии солидус JE кристаллизуется в аустенит.
Сплавы, содержащие до 2,14%С, называются сталью, а более 2,14% С – чугуном. Принятое разграничение совпадает с предельной растворимостью углерода в аустените. Стали после затвердевания имеют аустенитную структуру, обладающую высокой пластичностью. Поэтому стали при повышенных температурах легко деформируются и в отличие от чугуна являются ковкими сплавами.
Особенность первичной кристаллизации сплавов, содержащих углерода более 2,14% заключается в том, что она заканчивается эвтектическим превращением при
t = 1147°С:
Эвтектический сплав (4,3% С) затвердевает при постоянной температуре с образованием эвтектики – ледебурита – механической смеси аустенита и цементита.
В до- и заэвтектических чугунах первичная кристаллизация начинается с выделения избыточной фазы, соответственно аустенита или цементита. По мере выделения избыточной фазы состав жидкости, изменяясь по линии ликвидус, приближается к составу эвтектики. На линии ECF жидкая фаза в любом сплаве имеет эвтектический состав (4,3% С), поэтому линия ECF называется линией эвтектических превращений.
Ледебурит имеет сотовое (пластины цементита, проросшие разветвленными кристаллами аустенита) или пластинчатое (тонкие пластины цементита, разделенные аустенитом – образуется при быстром охлаждении) строение. Сотовое и пластинчатое строение нередко сочетается в одной колонии.
Ледебурит хрупок, тверд (700НВ) и плохо обрабатывается резанием.
По сравнению со сталями чугуны обладают значительно лучшими литейными свойствами (низкой температурой плавления, имеют меньшую усадку).
Фазовые и структурные изменения после затвердевания
связаны с полиморфизмом железа, изменением растворимости углерода в аустените и феррите с понижением температуры и эвтектоидным превращением.
В доэвтектоидных сплавах (%С < 0,8%) ниже линии GOS g-решетка аустенита перестраивается в a-решетку, что и приводит к образованию феррита, линия GOS называется линией ферритных превращений. В температурной области PGS по границам зерен аустенита образуются зародыши феррита, они растут, поглощая зерна аустенита.
По мере выделения феррита состав аустенита изменяется по линии ферритных превращений, приближаясь к эвтектоидному. Этот состав достигается на линии PSK (727 ºС), где происходит эвтектоидное превращение. Эвтектоидное превращение заключается в распаде аустенита на механическую смесь феррита и цементита. Перлит – механическая смесь феррита и цементита. Линия PSK – линия эвтектоидных превращений.
После окончательного охлаждения доэвтектоидные сплавы имеют структуру: феррит + перлит. Чем больше углерода, тем меньше феррита и больше перлита.
Сплавы с содержанием углерода менее 0,02% называются техническим железом. Ниже линии GP существует только феррит. С понижением температуры растворимость углерода в a-железе уменьшается в соответствии с линией PQ – линией предельной растворимости углерода в a-железе. Из феррита выделяется цементит третичный. Точка Р соответствует максимальной растворимости углерода в a-железе – 0,02%.
Линия МО – линия магнитных превращений. Сталь при нагреве становится немагнитной, никаких структурных изменений при этом не происходит.
В заэвтектоидныхсталях (0,8 < %С < 2,14) вследствие уменьшения растворимости углерода в g-железе с понижением температуры выделяется избыточная фаза – вторичный цементит. Превращение аустенита начинается в соответствии с линией ES – линией цементитных превращений (или предельной растворимости углерода в g-железе).
По мере выделения цементита состав аустенита изменяется по линии ES, приближаясь к эвтектоидному. Этот состав достигается на линии PSK, где происходит эвтектоидное превращение аустенита в перлит.
После окончательного охлаждения заэвтектоидные сплавы имеют структуру: цементит + перлит.
В эвтектоидной стали (0,8%С) весь аустенит переходит в перлит. Перлит чаще имеет пластинчатое строение, то есть состоит из чередующихся пластинок феррита и цементита. Толщина пластинок 7,3:1. После специальной обработки перлит может иметь зернистое строение.
Перлит с пластинчатым цементитом обладает твердостью 200 – 230 НВ, пределом прочности 800 – 900 МПа, относительным удлинением 10%.
В доэвтектических чугунах ниже 1147°С происходит частичный распад аустенита – как первичных его кристаллов, выделившихся из жидкости, так и аустенита, входящего в состав ледебурита (вследствие уменьшения растворимости углерода в соответствии с линией SE).
При 727°С аустенит, обедненный углеродом до 0,8%, превращается в перлит. Таким образом, доэвтектические чугуны, после окончательного охлаждения имеют структуру перлит + цементит вторичный + ледебурит, где ледебурит – механическая смесь перлита и цементита. Эвтектический чугун состоит только из ледебурита (перлит + цементит). Заэвтектический чугун содержит углерода больше 4,3% и после затвердевания его структура – цементит + ледебурит.
Фазовый состав всех сплавов при температуре ниже 727°С одинаков; они состоят из феррита и цементита[1]. Однако свойства сталей и белых чугунов значительно различаются. Таким образом, основным фактором, определяющим свойства сплавов системы железо – цементит является их структура.
Построение кривых охлаждения
При построении кривых охлаждения необходимо пользоваться правилом фаз:
с=k – f + 1, где с – вариантность системы (число степеней свободы), k – число компонентов, f –. число фаз.
Количество компонент в данной системе всегда равно 2, это железо и углерод.
Количество фаз находят используя диаграмму (рис.2).
Не следует путать фазы со структурными составляющими, так как последние могут быть однофазными и многофазными, а одна и та же фаза может входить в разные составляющие. Например, в доэвтектических чугунах при комнатной температуре цементит вторичный, цементит перлита и цементит ледебурита является одной и той же фазой. Структура этого чугуна – перлит + ледебурит + цементит, а фазовый состав – феррит + цементит. Рассуждения: перлит это двухфазная структурная составляющая, состоящая из феррита и цементита; ледебурит при комнатной температуре состоит из перлита и цементита, в свою очередь, перлит сам по себе тоже не однороден и является смесью феррита и цементита; а структурная составляющая цементит – однофазна. Схематично эти рассуждения можно представить следующим образом:
|
|
Зная количество фаз и количество компонент, можно определить число степеней свободы. На линиях эвтектического, эвтектоидного и перитектического превращений система Fе – Fе3С находится в трехфазном состоянии, которое согласно правилу фаз является для двухкомпонентных систем нонвариантным: C=2-3+1=0. Все превращения при С = О происходят при постоянных температурах, и на кривой охлаждения они характеризуются горизонтальным участком.
В двухфазных областях диаграммы системы являются моновариантным:
С = 2-2+1=1, в связи с чем превращения в сплавах в этих областях происходят в интервале температур. Выделение скрытой теплоты кристаллизации замедляет темп снижения температуры, поэтому участки кривых охлаждения в таких случаях будут пологими (с меньшим наклоном). Начало и конец превращений, когда изменяется вариантность системы, фиксируют на кривых охлаждения перегибами.
В однофазных областях системы биварианты: C=2-1+1=2. При этом с изменением температуры никаких превращений не происходит, и на кривых охлаждения будут крутые участки (с большим наклоном).
Кривые охлаждения необходимо строить, начиная с жидкого состояния. На каждом участке кривой должны быть обозначены число степеней свободы
(С = ...) и структуру. На горизонтальных участках обозначают превращения, например, А→Ф+Ц.
На рис. 3. приведен пример построения кривой охлаждения заэвтектоидной стали содержащей 1,5%С.
Выше линии ликвидус сплав находится в жидком однофазном состоянии. В соответствии с правилом фаз (С=2-1+1=2, фаза - жидкий раствор) система в этой области бивариантна, фазовых превращений не происходит, и температура до точки 1 снижается достаточно интенсивно (крутой участок кривой охлаждения).
В точке 1 начинается процесс первичной кристаллизации, продолжающийся до точки 2, из жидкого раствора выпадают кристаллы аустенита. По мере охлаждения сплава от точки 1 до точки 2 концентрация компонентов в аустените изменяется согласно линии JЕ от точки J к точке 2, а в жидкости – согласно линии BC от точки 1 к точке 2¢ (рис. 3). Составы и количества фаз определяют по правилу отрезков. Например, в точке m состав жидкой фазы найдем проекцией точки n на ось концентраций, а состав твердой фазы – проекцией точки k.
|
Рис. 3. Диаграмма состояния Fe – C (а) и кривые охлаждения стали (б) и чугуна (в).
Количество фаз определяют из соотношения отрезков:
Процесс первичной кристаллизации в данном случае идет при понижении температуры, что согласуется с правилом фаз (С=2-2+1=1; фазы - жидкий раствор и аустенит). Таким образом, система в этой области моновариантна, в процессе превращения выделяется скрытая теплота кристаллизации, замедляющая снижение температуры, поэтому участок кривой охлаждения будет пологим. Первичная кристаллизация сплава заканчивается в точке 2.
В интервале между точками 2 и 3 сплав охлаждается, не претерпевая никаких превращений. Система при этом бивариантна (C=2-1+1=2; фаза - аустенит), участок кривой охлаждения будет крутым.
При температуре, соответствующей точке 3, достигается предел насыщения аустенита углеродом. Ниже этой точки аустенит становится перенасыщенным. Избыточный углерод из зерен аустенита диффундирует к их границам и здесь выделяется в виде вторичного цементита. Процесс кристаллизации вторичного цементита, в соответствии с правилом фаз, протекает с понижением температуры сплава
(С=2-2+1=1; фазы - аустенит и цементит). Таким образом, система моновариантна, выделяющаяся скрытая теплота кристаллизации замедляет снижение температуры, и участок кривой охлаждения будет пологим. Концентрация углерода в аустените при этом изменяется согласно линии ES от точки 3 к точке S и достигает эвтектоидной (0,8%С) при температуре 727°С (точка 4). При этой температуре и концентрации аустенит превращается в перлит (эвтектоидное превращение):
Согласно правилу фаз при эвтектоидном превращении система нонвариантна (С=2-3+1=0; фазы - аустенит, цементит, феррит), процесс идет при постоянной температуре, и на кривой охлаждения будет горизонтальный участок.
Ниже температуры 727°С в рассматриваемом сплаве практически не происходит превращений. По теоретическим данным, из феррита здесь выделяется третичный цементит, вследствие чего система будет моновариантной (С=2-2+1=1; фазы – феррит и цементит). Но феррит здесь содержится только в составе перлита, третичный цементит выделяется в незначительном количестве и металлографически не обнаруживается, так как сливается с цементитом перлита. Таким образом, в структуре стали данного состава при комнатной температуре наблюдаются зерна перлита, окаймленные тонкой сеткой вторичного цементита.
Превращения в сплавах в процессе нагрева происходят в обратной последовательности при некотором их перегреве выше температур равновесного состояния.
КОНТРОЛЬНЫЕ ВОПРОСЫ
1. Как взаимодействует углерод с железом?
2. Какое максимальное процентное содержание углерода может быть в α-, γ-, δ-железе?
3. Укажите линии и точки диаграммы, приведите их названия.
4. Что представляет собой каждая из структурных составляющих: аустенит, феррит, цементит, перлит, ледебурит?
5. Что представляет собой перитектическое превращение и как оно протекает?
6. Что представляет собой эвтектическое превращение и как оно протекает?
7. Что представляет собой эвтектоидное превращение и как оно протекает?
8. Какие фазы присутствует на линии PSK и каковы их составы? Какова вариантность системы на этой линии?
9. Какой цементит называется первичным, вторичным, третичным?
10. В чем причина выделения вторичного и третичного цементита по мере понижения температуры?
11. Расскажите и покажите, как определяется концентрация углерода в аустените при различных температурах в заэвтектоидных сталях и доэвтевктических чугунах.
12. Какое изменение происходит в ледебурите на линии РSК?
13. В чем причина выделения феррита в доэвтектоидных сталях ниже линии G0S?
14. Какие фазы присутствуют в доэвтектических чугунах при комнатной температуре и какова при этом вариантность системы?
15. Опишите последовательно все превращения, происходящие при охлаждении, начиная от жидкого состояния в эвтектоидной стали, одной из до- и одной из заэвтектоидных, эвтектическом чугуне, одном из до- и одном из эаэвтектических. Объясните при этом причину каждого превращения и расскажите об изменениях количеств и состав фаз в процессе превращений.
Литература
1. Лахтин Ю.М., Леонтьев В.П. Материаловедение. – М.: Машиностроение. 1980, с. 123 – 131.
2. Гуляев А.П. Металловедение. – М.: Металлургия, 1977, с. 159 – 179.