Химические свойства кислот

Типы солей

  • Средние (нормальные) соли — все атомы водорода в молекулах кислоты замещены на атомы металла. Пример: , .
  • Кислые соли — атомы водорода в кислоте замещены атомами металла частично. Они получаются при нейтрализации основания избытком кислоты. Пример: , .
  • Осно́вные соли — гидроксогруппы основания (OH) частично замещены кислотными остатками. Пример: .
  • Двойные соли — в их составе присутствует два различных катиона, получаются кристаллизацией из смешанного раствора солей с разными катионами, но одинаковыми анионами. Пример: .
  • Смешанные соли — в их составе присутствует два различных аниона. Пример: .
  • Гидратные соли (кристаллогидраты) — в их состав входят молекулы кристаллизационной воды. Пример: .
  • Комплексные соли — в их состав входит комплексный катион или комплексный анион. Пример: , .

Особую группу составляют соли органических кислот, свойства которых значительно отличаются от свойств минеральных солей. Некоторые из них можно отнести к особенному классу органических солей, так называемых ионных жидкостей или по-другому «жидких солей», органических солей с температурой плавления ниже 100 °C.

Существуют различные методы получения солей:

  • Взаимодействие кислот с металлами, основными и амфотерными оксидами / гидроксидами:
  • Взаимодействие кислотных оксидов c щелочами, основными и амфотерными оксидами / гидроксидами:
  • Взаимодействие солей c кислотами, другими солями (если образуется выходящий из сферы реакции продукт):
  • Взаимодействие простых веществ:
  • Взаимодействие оснований с неметаллами, например с галогенами:

Химические свойства

Химические свойства определяются свойствами катионов и анионов, входящих в их состав.

  • Соли взаимодействуют с кислотами и основаниями, если в результате реакции получается продукт, который выходит из сферы реакции (осадок, газ, мало диссоциирующие вещества, например, вода):
  • Соли взаимодействуют с металлами, если свободный металл находится левее металла в составе соли в электрохимическом ряде активности металлов:
  • Соли взаимодействуют между собой, если продукт реакции выходит из сферы реакции (образуется газ, осадок или вода); в том числе эти реакции могут проходить с изменением степеней окисления атомов реагентов:
  • Некоторые соли разлагаются при нагревании:

Номенклатура солей

Общая формула соли МnAcm, где М – металл, Ас – кислотный остаток, n – число атомов металла, равное заряду иона кислотного остатка, m – число ионов кислотного остатка, равное заряду иона металла.

Названия средних солей состоят из двух частей: названия аниона (кислотного остатка) в именительном падеже и катиона в родительном. Число катионов и анионов, как правило, не указывается. Если один и тот же металл проявляет различную степень окисления, то её указывают в скобках римской цифрой.

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

Например, CuSO4 – сульфат меди (II);

NaCl – хлорид натрия.

Названия кислых солей образуются добавлением к аниону приставки гидро-, и, если необходимо, то с соответствующим числительным.

Например, NaHSO4 – гидросульфат натрия;

KH2PO4 – дигидрофосфат калия.

Названия основных солей образуются добавлением к аниону приставки гидроксо-, и, если необходимо, то с соответствующим числительным.

Например, AlOHSO4 – гидроксосульфат алюминия;

Fe(OH)2Cl – дигидроксохлорид железа (III).

Названия двойных солей состоят из двух частей: названия аниона в именительном падеже и катионов в родительном. Число катионов и анионов, как правило, не указывается. Если один и тот же металл проявляет различную степень окисления, то её указывают в скобках римской цифрой.

Например, KAl(SO4)2 – сульфат алюминия – калия;

NH4MgPO4 – фосфат магния – аммония;

(NH4)2Fe(SO4)2 – сульфат железа (II) – аммония.

Названия комплексных соединений состоят из двух частей: внутренней и внешней сферы, причем вся внутренняя сфера называется одним словом. Названия лигандов – анионов оканчиваются соединительной гласной -о-. При этом для одноэлементных анионов соединительная гласная -о- добавляется к корню названия элемента, например, Cl- – хлоро-, а для многоэлементных кислородсодержащих анионов соединительная гласная присоединяется к традиционным или систематическим названиям анионов, например, SO32- – сульфито-; ОН- – гидроксо-; CN- – циано-. Названия молекул, являющихся лигандами, оставляют без изменения, например, C2H4 – этилен; но Н2О называют аква-, NH3 – аммин-, СО – карбонил-.

При названии соединений с комплексным анионом комплексообразователь называют по-латински, добавляя суффикс -ат. Степень окисления комплексообразователя указывают римскими цифрами в скобках после названия комплексного аниона. Число лигандов обозначают с помощью греческих числительных: 1 – моно-, 2 – ди, 3 – три, 4 – тетра, 5 – пента, 6 – гекса. Название катиона указывают в родительном падеже.

Например, Na[Al(OH)4] – тетрагидроксоалюминат натрия;

K3[Cu(CN)4] – тетрацианокупрат (I) калия;

(NH4)2[Hg(NCS)4] – тетрароданомеркурат (II) аммония.

При названии соединений с комплексным катионом комплексообразователь называют по-русски в родительном падеже. Степень окисления комплексообразователя указывают римскими цифрами в скобках после названия. Название аниона указывают в именительном падеже.

Например, [Ag(NH3)2]Cl – хлорид диамминсеребра (I);

[Pt(NH3)3Cl]Cl – хлорид хлоротриамминплатины (II);

[Co(H2O)6]Br2 – бромид гексааквакобальта (II).

В названии комплексного соединения, состоящего только из внутренней сферы, степень окисления комплексообразователя не указывается, так как она однозначно определяется исходя из электронейтральности комплекса. Название комплексообразователя приводится по-русски в именительном падеже.

Например, [Co(H2O)3F3] – трифторотриаквакобальт;

[Cr(NH3)2Cl2] – дихлородиамминхром;

[Pt(NH3)2Cl4] – тертахлородиамминпланита.

Многие соли имеют традиционные названия, например:

Pb2(CO3)(OH)2 – свинцовые белила;

KCr(SO4)2·12H2O – хромкалиевые квасцы;

CuSO4·5H2O – медный купорос;

NaHCO3 – сода питьевая;

K4[Fe(CN)6] – желтая кровяная соль и др.

Кисло́ты — сложные вещества, в состав которых обычно входят атомы водорода, способные замещаться на атомы металлов, и кислотный остаток. Водные растворы кислот имеют кислый вкус, обладают раздражающим действием, способны менять окраску индикаторов, отличаются рядом общих химических свойств.

Классификация кислот

  • По содержанию кислорода
    • бескислородные (HCl, H2S);
    • кислородосодержащие (HNO3,H2SO4).
  • По основности — количество кислых атомов водорода
    • Одноосновные (HNO3);
    • Двухосновные (H2SeO4, двухосновные предельные карбоновые кислоты);
    • Трёхосновные (H3PO4, H3BO3).
    • Полиосновные (практически не встречаются).
  • По силе
    • Сильные — диссоциируют практически полностью, константы диссоциации больше 1·10−3 (HNO3);
    • Слабые — константа диссоциации меньше 1·10−3 (уксусная кислота Kд= 1,7·10−5).
  • По устойчивости
    • Устойчивые (H2SO4);
    • Неустойчивые (H2CO3).
  • По принадлежности к классам химических соединений
    • Неорганические (HBr);
    • Органические (HCOOH,CH3COOH);
  • По летучести
    • Летучие (H2S, HCl);
    • Нелетучие (H2SO4) ;
  • По растворимости в воде
    • Растворимые (H2SO4);
    • Нерастворимые (H2SiO3);

Химические свойства кислот

Окрашивание индикаторной бумаги в растворе хлороводородной кислоты

  • Взаимодействие с основными оксидами с образованием соли и воды:
  • Взаимодействие с амфотерными оксидами с образованием соли и воды:
  • Взаимодействие со щелочами с образованием соли и воды (реакция нейтрализации):
  • Взаимодействие с нерастворимыми основаниями с образованием соли и воды, если полученная соль растворима:
  • Взаимодействие с солями, если выпадает осадок или выделяется газ:
  • Сильные кислоты вытесняют более слабые из их солей:

(в данном случае образуется неустойчивая угольная кислота , которая сразу же распадается на воду и углекислый газ)

  • Металлы, стоящие в ряду активности до водорода, вытесняют его из раствора кислоты (кроме азотной кислоты любой концентрации и концентрированной серной кислоты ), если образующаяся соль растворима:
  • С азотной кислотой и концентрированной серной кислотами реакция идёт иначе:

См. статью Взаимодействие кислот с металлами.

  • Для органических кислот характерна реакция этерификации (взаимодействие со спиртами с образованием сложного эфира и воды):

Например,

Некоторые распространённые кислоты

Наши рекомендации