Термодинамическая оценка возможности восстановления водородом элементов из их оксидов

Уравнение реакции Термодинамическая оценка возможности восстановления водородом элементов из их оксидов - student2.ru Н, кДж/моль Температура, °С, при которой Термодинамическая оценка возможности восстановления водородом элементов из их оксидов - student2.ru G = 0 Осуществление процесса на практике
MnO2 + 2H2 = Mn + 2H2O Возможно
1/2Fe2O3 + 3/2H2 = Fe + 3/2H2O Возможно
1/2Cr2O3 + 3/2H2 = Cr + 3/2H2O Невозможно
SiO2 + 2H2 = Si + 2H2O Невозможно
CaO + H2 = Ca + H2O Невозможно

Термодинамика позволяет в принципе оценить возможность протекания химических реакций. Однако она ничего не говорит о реальных скоростях их протекания. Так, термодинамические расчеты показывают, что реакция окисления целлюлозы кислородом воздуха должна самопроизвольно протекать при комнатной температуре, чего на практике не наблюдается. Причина состоит в том, что у молекул не хватает энергии для осуществления процесса за обозримое время. Проблему времени достижения состояния равновесия решает наука о скоростях химических реакций – химическая кинетика.

Энтальпия. Закон Гесса

Энтальпия системы (от греч. enthalpo нагреваю) – это однозначная функция H состояния термодинамической системы при независимых параметрах энтропии S и давлении P, которая связана с внутренней энергией U соотношением

 
H = U + PV
 

где V – объем системы.

В химии чаще всего рассматривают изобарические процессы (P = const), и тепловой эффект в этом случае называют изменением энтальпии системы или энтальпией процесса:

 
Термодинамическая оценка возможности восстановления водородом элементов из их оксидов - student2.ru
 
 
ΔH = ΔU + PΔV
(4.1)

Энтальпия имеет размерность энергии (кДж). Ее величина пропорциональна количеству вещества; энтальпия единицы количества вещества (моль) измеряется в кДж∙моль–1.

В термодинамической системе выделяющуюся теплоту химического процесса условились считать отрицательной (экзотермический процесс, ΔH < 0), а поглощение системой теплоты соответствует эндотермическому процессу, ΔH > 0.

Уравнения химических реакций с указанием энтальпии процесса называют термохимическими. Численные значения энтальпии ΔH указывают через запятую в кДж и относят ко всей реакции с учетом стехиометрических коэффициентов всех реагирующих веществ. Поскольку реагирующие вещества могут находиться в разных агрегатных состояниях, то оно указывается нижним правым индексом в скобках: (т) – твердое, (к) – кристаллическое, (ж) – жидкое, (г) – газообразное, (р) – растворенное. Например, при взаимодействии газообразных H2 и Cl2 образуются два моля газообразного HCl. Термохимическое уравнение записывается так:

  Термодинамическая оценка возможности восстановления водородом элементов из их оксидов - student2.ru  

При взаимодействии газообразных H2 и O2 образующаяся H2O может находиться в трех агрегатных состояниях, что скажется на изменении энтальпии:

  Термодинамическая оценка возможности восстановления водородом элементов из их оксидов - student2.ru  
  Термодинамическая оценка возможности восстановления водородом элементов из их оксидов - student2.ru  

Приведенные энтальпии образования веществ и энтальпии реакций отнесены к стандартным условиям (P = 101,325 кПа) и взяты для температуры T = 298 K. Стандартное состояние термодинамической функции, например, энтальпии, обозначается нижним и верхним индексами: Термодинамическая оценка возможности восстановления водородом элементов из их оксидов - student2.ru нижний индекс обычно опускают: Δ Термодинамическая оценка возможности восстановления водородом элементов из их оксидов - student2.ru .

Закон Гесса.Пользуясь табличными значениями Термодинамическая оценка возможности восстановления водородом элементов из их оксидов - student2.ru Термодинамическая оценка возможности восстановления водородом элементов из их оксидов - student2.ru и Термодинамическая оценка возможности восстановления водородом элементов из их оксидов - student2.ru , можно рассчитать энтальпии различных химических процессов и фазовых превращений. Основанием для таких расчетов является закон Гесса, сформулированный петербургским профессором Г. И. Гессом (1841 г.): «Тепловой эффект (энтальпия) процесса зависит только от начального и конечного состояния и не зависит от пути перехода его из одного состояния в другое».

Анализ закона Гесса позволяет сформулировать следующие следствия:

  1. Энтальпия реакции равна разности сумм энтальпий образования конечных и начальных участников реакций с учетом их стехиометрических коэффициентов.
ΔH = ΣΔHобр.конечн – ΣΔHобр.нач
  1. Энтальпия реакции равна разности сумм энтальпий сгорания начальных и конечных реагентов с учетом их стехиометрических коэффициентов.
ΔH = ΣΔHсгор.нач – ΣΔHсгор.конечн
  1. Энтальпия реакции равна разности сумм энергий связей Eсв исходных и конечных реагентов с учетом их стехиометрических коэффициентов.

В ходе химической реакции энергия затрачивается на разрушение связей в исходных веществах (ΣEисх) и выделяется при образованиии продуктов реакции (–ΣEпрод). Отсюда

ΔH° = ΣEисх – ΣEпрод

Следовательно, экзотермический эффект реакции свидетельствует о том, что образуются соединения с более прочными связями, чем исходные. В случае эндотермической реакции, наоборот, прочнее исходные вещества.

При определении энтальпии реакции по энергиям связей уравнение реакции пишут с помощью структурных формул для удобства определения числа и характера связей.

  1. Энтальпия реакции образования вещества равна энтальпии реакции разложения его до исходных веществ с обратным знаком.
ΔHобр = –ΔHразл
  1. Энтальпия гидратации равна разности энтальпий растворения безводной соли Термодинамическая оценка возможности восстановления водородом элементов из их оксидов - student2.ru и кристаллогидрата Термодинамическая оценка возможности восстановления водородом элементов из их оксидов - student2.ru

Из вышесказанного видно, что закон Гесса позволяет обращаться с термохимическими уравнениями как с алгебраическими, т. е. складывать и вычитать их, если термодинамические функции относятся к одинаковым условиям.

Например, диоксид углерода можно получить прямым синтезом из простых веществ (I) или в две стадии через промежуточный продукт (II):

Термодинамическая оценка возможности восстановления водородом элементов из их оксидов - student2.ru
Рисунок 4.1 Энтальпия первого пути равна сумме энтальпий отдельных стадий второго пути

Эти термохимические реакции можно представить в виде энтальпийных диаграмм. Естественно, за начало следует принять стандартные состояния простых веществ, энтальпии которых равны нулю. Образование сложных веществ (CO и CO2) сопровождается понижением энтальпии системы. Термодинамическая оценка возможности восстановления водородом элементов из их оксидов - student2.ru

24.Тепловой эффект реакции. Теплота образования веществ. Первый закон термоденамики.

Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции — отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.

Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:

  • Реакция должна протекать либо при постоянном объёме Qv(изохорный процесс), либо при постоянном давлении Qp(изобарный процесс).
  • В системе не совершается никакой работы, кроме возможной при P = const работы расширения.

Если реакцию проводят при стандартных условиях при Т = 298,15 К = 25 ˚С и Р = 1 атм = 101325 Па, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции ΔHrO. В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования.

ТЕПЛОТА ОБРАЗОВАНИЯ - тепловой эффект реакции образования химических соединений из простых веществ в стандартном состоянии. Теплоты образования, приводимые в термодинамических справочниках, используют для расчетов тепловых эффектов любых реакций с помощью законов Гесса и уравнения Кирхгофа.

Первый закон термодинамики является обобщением закона сохранения и превращения энергии для термодинамической системы. Он формулируется следующим образом:

Изменение ΔU внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты Q, переданной системе, и работой A, совершенной системой над внешними телами.

ΔU = Q – A.

Соотношение, выражающее первый закон термодинамики, часто записывают в другой форме:

Q = ΔU + A.

25. Энергия Гиббса. Связь

Свободная энергия Гиббса (или просто энергия Гиббса, или потенциал Гиббса, или термодинамический потенциал в узком смысле) — это величина, показывающая изменение энергии в ходе химической реакции и дающая таким образом ответ на вопрос о принципиальной возможности протекания химической реакции; это термодинамический потенциал следующего вида:

Термодинамическая оценка возможности восстановления водородом элементов из их оксидов - student2.ru

Энергию Гиббса можно понимать как полную химическую энергию системы (кристалла, жидкости и т. д.)

Понятие энергии Гиббса широко используется в термодинамике и химии.

Самопроизвольное протекание изобарно-изотермического процесса определяется двумя факторами: энтальпийным, связанным с уменьшением энтальпии системы (ΔH), и энтропийным T ΔS, обусловленным увеличением беспорядка в системе вследствие роста ее энтропии. Разность этих термодинамических факторов является функцией состояния системы, называемой изобарно-изотермическим потенциалом или свободной энергией Гиббса (G, кДж)

26. Энтропия. 2 закон термодинамики

От греческого entropia -- поворот, превращение. Понятие энтропии впервые было введено в термодинамике для определения меры необратимого рассеяния энергии. Энтропия широко применяется и в других областях науки: в статистической физике как мера вероятности осуществления какого -- либо макроскопического состояния; в теории информации -- мера неопределенности какого-либо опыта (испытания), который может иметь разные исходы. Все эти трактовки энтропии имеют глубокую внутреннюю связь.

Энтропия -- это функция состояния, то есть любому состоянию можно сопоставить вполне определенное (с точность до константы -- эта неопределенность убирается по договоренности, что при абсолютном нуле энтропия тоже равна нулю) значение энтропии.

Для обратимых (равновесных) процессов выполняется следующее математическое равенство (следствие так называемого равенства Клаузиуса)

Второй закон термодинамики

Формулировки:

Р. Клаузиус: Невозможен процесс, единственным результатом которого

является переход теплоты от более холодного тела к более горячему

У. Томсон: Теплота наиболее холодного из участвующих процессе тел не

может служить источником работы

Существует функция состояния системы (энтропия), определяющая

направление самопроизвольного процесса: в изолированной системе

самопроизвольно могут протекать только те процессы, при которых

происходит увеличение энтропии

27. Скорость химической реакции. Закон действующих масс.

Наши рекомендации