Основные источники загрязнения питьевой воды

Мало кто в наши дни сомневается, что вода, которую мы пьем и используем в быту, нуждается в дополнительной очистке, откуда бы она не поступала - из колодца, артезианской скважины или водопровода. По статистике Госстроя России, в аварийном состоянии сейчас находится около 40% городской водопроводной сети, не говоря уже о загородных коттеджах и дачных поселках, где качество природной воды зачастую выходит за пределы санитарных норм. В своих докладах на научных конференциях ученые все чаще констатируют, что из нашего крана течет не только не питьевая, но даже не "бытовая" вода.

В последние десятилетия поверхностные и подземные водоисточники подвергаются интенсивному антропогенному загрязнению. Ухудшение качества воды водоисточников привело к тому, что во многих регионах питьевая вода не отвечает гигиеническим требованиям как по санитарно-химическим, так по санитарно-биологическим показателям. По данным Минздрава Беларуси около половины населения страны вынуждено использовать недоброкачественную питьевую воду.

Промышленные стоки

В зависимости от отрасли промышленности могут содержать практически все существующие химические вещества: тяжелые металлы, фенолы, формальдегид, органические растворители (ксилол, бензол, толуол), упомянутые выше (САУ) и т. н. особо токсичные стоки. Последняя разновидность вызывает мутагенные (генетические), тератогенные (повреждающие плод) и канцерогенные (раковые новообразования) изменения. Главные источники особо токсичных стоков: металлургическая промышленность и машиностроение, производство удобрений, целлюлозно-бумажная промышленность, цементно-асбестовое производство и лако-красочная промышленность. Парадоксально, но источником загрязнения является также сам процесс очистки и водоподготовки (!).

Промышленные отходы


В грунтовых водах присутствуют в несколько меньших количествах, чем в поверхностных водах. Большинство этих отходов направляются прямо в реки. Кроме того, промышленные пыль и газы, оседают непосредственно или в соединении с атмосферными осадками и накапливаются на поверхности почвы. растениях, растворяются и проникают вглубь. Поэтому никого, кто профессионально занимается очисткой воды, не удивит содержание тяжелых металлов и радиоактивных соединений в колодцах, расположенных вдали от металлургических центров - в Карпатах. Промышленные пыль и газы переносится воздушными потоками на сотни километров от источника эмиссии. К промышленным загрязнениям почвы относятся также органические соединения образующиеся при переработке овощей и фруктов, мяса и молока, отходы пив заводов, животноводческих комплексов. Металлы и их соединения проникают в ткани организма в виде водного раствора. Проникающая способность очень высока: поражаются все внутренние органы и плод. Удаление из организма через кишечник, легкие и почки приводит к нарушению деятельности этих органов. Накапливание в организме следующих элементов приводит к:

поражению почек - ртуть, свинец, медь.

поражению печени - цинк, кобальт, никель.

поражению капилляров - мышьяк, висмут, железо, марганец.

поражению сердечной мышцы - медь, свинец, цинк, кадмий, ртуть, таллий.

возникновению раковых заболеваний - кадмий, кобальт, никель, мышьяк, радиоактивные изотопы.

Способы очистки воды

Вода подземных источников, поступающая в систему водоочистки, должна соответствовать стандартам на питьевую воду. Несмотря на то, что природная вода должна быть пригодна для питья, в ней могут присутствовать достаточно проблематичные загрязнители как результат деятельности человека и его отрицательного влияния на окружающую среду. В частности, к таким проблемам относится, несомненно, хлор и его соединения, которые должны быть удалены на какой-либо стадии процесса очистки. Снижение содержания примесей в воде часто достигается теми же процессами, которые применяются для снижения концентрации ионов. Однако если обычно мембранная технология для снижения концентрации ионов используется ограниченно, в некоторых случаях ее все же приходится применять для снижения общего содержания загрязнений. В частности, мембранные технологии приходится применять для подготовки воды в целях хранения. Поддержание низкого содержания бактерий в процессе водоподготовки, хранения и распределения воды весьма трудная задача, поэтому бактериальный контроль ведется на всем протяжении движения воды от источника водоснабжения и до потребителя.

Перечислим некоторые этапы водоподготовки, гарантирующие ее качество: удаление взвешенных, удаление хлора, снижение концентрации ионов, бактериологический контроль и удаление специфичных загрязнителей.

Фильтрация через уголь

Уголь способен удалять как растворенный в воде свободный хлор, так и хлорамины. Но в последнем случае время контакта воды и угля надо существенно увеличивать. Слой угля для удаления свободного хлора должен занимать в зависимости от концентрации хлора и исходных характеристик воды от 2 до 5 слоев, заполняющих объем аппарата. Для удаления хлораминов количество слоев должно составлять 7,5-12. Угольные фильтры также эффективны для снижения общего содержания примесей. Наибольшей проблемой угольных фильтров является их предрасположенность к заселению колониями бактерий. Для борьбы с этим угольное заполнение надо периодически подвергать санитарной обработке горячей водой или паром. Кроме того, для дезинфекции воды источник УФ-излучения должен быть установлен как на входе, так и на выходе из угольного фильтра. Это увеличит продолжительность интервала между санитарными обработками. Качество угля, используемого для заполнения угольных фильтров, также играет определенную роль. Если уголь используется для удаления специфичных органических соединений, он должен обладать соответствующими характеристиками. Желательно минимальное содержание примесей в угле, низкая зольность и достаточно высокая механическая прочность. Весь уголь сразу после загрузки следует промыть кислотой непосредственно в технологических емкостях. После пуска угольный слой следует промывать, пока из него не будут удалены мелкие частицы. Угольный слой должен периодически взрыхляться обратным потоком воды в течение всего срока эксплуатации.

Другими гранулированными материалами, эффективными для удаления хлора, являются композиции из разнородных металлов. Они не подвержены заселению бактериями, что является их существенным преимуществом.

Применение реагентов


Ввод реагента непосредственно в поток воды требует очень мало оборудования: дозировочных насосов и статических реакторов. Следовательно капитальные затраты на такой метод удаления соединений хлора крайне невысоки. Основные затраты определяются стоимостью реагентов. Осложнением, возникающим при использовании реагентов для удаления хлорсодержащих соединений, является стимулирование роста некоторых организмов, разрастающихся на оборудовании, в котором производится осаждение. По этой причине дозировка реагентов должна поддерживаться на таком низком уровне, который бы не приводил к быстрому росту этих организмов. Именно это требование и является трудновыполнимым: сложно поддерживать минимальную дозировку реагентов в условиях изменения концентрации хлорсодержащих соединений в широком диапазоне.

Ионный обмен


Хотя двухходовой обратный осмос (ОО) во многих случаях может обеспечить необходимое удаление ионов, часто проекты систем очистки воды предусматривают стадию ионного обмена, размещаемую вслед за установкой ОО. Ионный обмен удаляет СО2, который в системе ОО может быть причиной сбоев при контроле качества очистки. Кроме того, в некоторых случаях считается приемлемым в очень низко расходных системах очистки воды применять портативные ионообменные емкости как единственный метод снижения концентрации ионов. Использование ионного обмена вслед за установкой ОО повышает надежность всей системы очистки. Однако при этом возникает несколько проблем. Общеизвестно, что колонии бактерий охотно поселяются на поверхности гранул ионообменного материала, особенно на смесях катионита-анионита, имеющих нейтральный рН. Кроме того, на стадии регенерации ионообменных материалов используются рискованные реагенты и сложное оборудование. Применение ионообменных емкостей создает постоянную "непредсказуемость" в процессе водоподготовки. Некоторые из этих проблем уменьшаются проверенными способами применения ионообменной технологии. Например, раздельное использование катионитов и анионитов обеспечивает сильно отличающиеся от нейтрального значения рН на ионитах разного типа, что подавляет рост бактерий. Одновременно, раздельное применение катионитов и анионитов облегчает их регенерацию и снижает затраты на реагенты. Использование портативного ионообменного резервуара позволяет провести регенерацию без ущерба для основного процесса и является гарантией стабильного качества очищенной воды.

Дистилляция


Дистилляция является естественным процессом очистки воды, состоящим из стадии испарения и конденсации. Любой загрязнитель, испаряющийся при более высокой, чем вода, температуре, может быть удален в процессе дистилляции с очень высокой полнотой (обычно более 99%). Загрязнения в водяной пар могут попадать только в виде брызг при слишком интенсивном кипении.

Очистка дистилляцией энергоемка из-за высоких энергозатрат на испарение воды. Рациональные технологические схемы, однако, могут существенно снизить энергозатраты. К таким схемам относится многокорпусная вакуумвыпарка, когда на обогрев последующего корпуса применяется вторичный пар предыдущего более "горячего" корпуса. При такой схеме используется особенность, присущая фазовому переходу первого рода. Тепло, выделяющееся при конденсации, равно затратам тепла на испарение, если оба процесса вести при одинаковой температуре. Но если конденсацию вести при более низкой температуре, то будет выделяться тепла больше, чем было затрачено на испарение. Предположим, испарение ведется при температуре 100°С. Тогда на испарение 1 кг воды расходуется 2259 кДж тепла. Если конденсацию провести при 40°С, то при этом выделится тепла 2406 кДж, то есть на 147 кДж больше. Это "избыточное" тепло можно использовать на подогрев, тем более, что для подогрева 1 кг воды от температуры 20°С до температуры 100°С нужно только 80 кДж тепла.

Слабым местом дистилляции является накипеобразование на поверхностях теплообмена. Слой накипи даже в 1 мм существенно повышает энергозатраты в тепловых процессах. Для борьбы с этим злом обычно используют различного типа антинакипины. Антинакипинами называют химические добавки, молекулы которых образуют водорастворимые комплексные соединения с ионами кальция и магния. Комплексообразователями являются, например, этилендиаминтетрауксусная кислота (ЭДТА) или полимерные фосфаты, такие как соль Грема, гексаметафосфат натрия и др.

У антинакипина есть несколько крупных недостатков:

высокая стоимость;

необходимость использования в технологической схеме узла растворения антинакипина и его дозировки;

молекула антинакипина гидролизуется (реагирует с водой) и разлагается при высоких температурах. Этот процесс протекает относительно медленно, но принуждает постоянно компенсировать гидролиз, добавлять к питательной воде "избыточные" порции антинакипина;

если в качестве антинакипина применяется органический комплексообразователь, он может с брызгами при интенсивном кипении попадать в дистиллят. А органические антинакипины ядовиты для человека. Прекрасным техническим решением, лишенным всех недостатков антинакипина, является применение МГД-резонатора. Он одновременно решает две проблемы:

снижая удельную теплоту парообразования, уменьшает энергозатраты; предотвращает накипеобразование, вынуждая карбонат кальция кристаллизоваться в форме арагонита.

МГД-резонатора на сорокакорпусной опреснительной установке, запитываемой водой Каспийского моря, позволило:

отказаться от антинакипина;

работать в безнакипном режиме;

снизить энергозатраты на получение 1 т пресной воды на 30-50%.

Наши рекомендации