Б. Реакции, протекающие с изменением степеней окисления химических элементов (окислительно-восстановительные реакции).
Протекание химических реакций в целом обусловлено обменом частицами между реагирующими веществами. Часто обмен сопровождается переходом электронов от одной частицы к другой. Так, при вытеснении цинком меди в растворе сульфата меди (II):
Zn(т) +CuSO4(р)=ZnSO4(p)+Cu(т)
электроны от атомов цинка переходят к ионам меди:
Zn0= Zn2++ 2e,
Cu2+ + 2e = Cu0 ,
или суммарно: Zn0 + Cu2+= Zn2+ + Cu0.
Процесс потери электронов частицей называют окислением, а процесс приобретения электронов – восстановлением. Окисление и восстановление протекают одновременно, поэтому взаимодействия, сопровождающиеся переходом электронов от одних частиц к другим, называют окислительно-восстановительными реакциями (ОВР).
Для удобства описания ОВР используют понятие степени окисления– величины, численно равной формальному заряду, который приобретает элемент, исходя из предположения, что все электроны каждой из его связи перешли к более электроотрицательному атому данного соединения. Протекание ОВР сопровождается изменением степеней окисления элементов участвующих в реакции веществ. При восстановлении степень окисления элемента уменьшается, при окислении – увеличивается. Вещество, в состав которого входит элемент, понижающий степень окисления, называют окислителем; вещество, в состав которого входит элемент, повышающий степень окисления, называют восстановителем.
Степень окисления элемента в соединении определяют в соответствии со следующими правилами:
1) степень окисления элемента в простом веществе равна нулю;
2) алгебраическая сумма всех степеней окисления атомов в молекуле равна нулю;
3) алгебраическая сумма всех степеней окисления атомов в сложном ионе, а также степень окисления элемента в простом одноатомном ионе равна заряду иона;
4) отрицательную степень окисления проявляют в соединении атомы элемента, имеющего наибольшую электроотрицательность;
5) максимально возможная (положительная) степень окисления элемента соответствует номеру группы, в которой расположен элемент в Периодической таблице Д.И. Менделеева.
Ряд элементов в соединениях проявляют постоянную степень окисления:
1) фтор, имеющий наивысшую среди элементов электроотрицательность, во всех соединениях имеет степень окисления –1;
2) водород в соединениях проявляет степень окисления +1, кроме гидридов металлов (–1);
3) металлы IA подгруппы во всех соединениях имеют степень окисления +1;
4) металлы IIA подгруппы, а также цинк и кадмий во всех соединениях имеют степень окисления +2;
5) степень окисления алюминия в соединениях +3;
6) степень окисления кислорода в соединениях равна –2, за исключением соединений, в которых кислород присутствует в виде молекулярных ионов: О2+, О2-, О22-, О3-, а также фторидов OxF2.
Степени окисления атомов элементов в соединении записывают над символом данного элемента, указывая вначале знак степени окисления, а затем ее численное значение, например, K+1Mn+7O4-2, в отличие от заряда иона, который записывают справа, указывая вначале зарядовое число, а затем знак: Fe2+, SO42–.
Окислительно-восстановительные свойства атомов различных элементов проявляются в зависимости от многих факторов, важнейшие из которых – электронное строение элемента, его степень окисления в веществе, характер свойств других участников реакции.
Соединения, в состав которых входят атомы элементов в своей максимальной (положительной) степени окисления, например, K+1Mn+7O4-2, K2+1Cr+62O7-2, H+N+5O3-2, Pb+4O2-2, могут только восстанавливаться, выступая в качестве окислителей.
Соединения, содержащие элементы в их минимальной степени окисления, например, N-3H3, H2S-2, HI-1, могут только окисляться и выступать в качестве восстановителей.
Вещества, содержащие элементы в промежуточных степенях окисления, например H+N+3O2, H2O2-1, S0, I20, Cr+3Cl3, Mn+4O2-2, обладают окислительно-восстановительной двойственностью. В зависимости от партнера по реакции, такие вещества способны и принимать, и отдавать электроны. Состав продуктов восстановления и окисления также зависит от многих факторов, в том числе среды, в которой протекает химическая реакция, концентрации реагентов, активности партнера по окислительно-восстановительному процессу. Чтобы составить уравнение окислительно-восстановительной реакции, необходимо знать, как изменяются степени окисления элементов, в какие другие соединения переходят окислитель и восстановитель.
Классификация окислительно-восстановительных реакций.Различают четыре типа окислительно-восстановительных реакций.
1. Межмолекулярные – реакции, в которых окислитель и восстановитель – разные вещества: Zn0 +Cu+2SO4 =Zn+2SO4 +Cu0.
2. При термическом разложении сложных соединений, в состав которых входят окислитель и восстановитель в виде атомов разных элементов, происходят окислительно-восстановительные реакции, называемые внутримолекулярными: (N-3H4)2Cr+62O7= N20↑ + Cr+32O3 + 4H2O.
3. Реакции диспропорционирования могут происходить, если соединения, содержащие элементы в промежуточных степенях окисления, попадают в условия, где они оказываются неустойчивыми (например, при повышенной температуре). Степень окисления этого элемента и повышается и понижается: 2H2O2-1= O02↑ + 2 H2O-2.
4. Реакции контрпропорционирования – это процессы взаимодействия окислителя и восстановителя, в состав которых входит один и тот же элемент в разных степенях окисления. В результате продуктом окисления и продуктом восстановления является вещество с промежуточной степенью окисления атомов данного элемента:
Na2S+4O3 + 2Na2S-2 + 6HCl = 3S0+ 6NaCl + 3H2O.
Существуют также реакции смешанного типа. Например, к внутримолекулярной реакции контрпропорционирования относится реакция разложения нитрата аммония: N-3H4 N+5O3 = N+12O + 2H2O.
Составление уравнений окислительно-восстановительных реакций. Для составления уравнений окислительно-восстановительных реакций наиболее часто используют метод электронного баланса и метод электронно-ионных полуреакций.
Метод электронного баланса обычно используют для составления уравнений окислительно-восстановительных реакций, протекающих между газами, твердыми веществами и в расплавах. Последовательность операций следующая:
1. Записывают формулы реагентов и продуктов реакции в молекулярном виде: FeCl3 + H2S → FeCl2 + S + HCl;
2. Определяют степени окисления атомов, меняющих ее в процессе реакции: Fe3+Cl3 + H2S-2 → Fe2+Cl2 + S0 + HCl;
3. По изменению степеней окисления устанавливают число электронов, отдаваемых восстановителем, и число электронов, принимаемых окислителем; составляют электронный баланс с учетом принципа равенства числа отдаваемых и принимаемых электронов:
Fe+3 +1e = Fe+2½∙2
S-2 – 2e = S0 ½∙1
4. Множители электронного баланса записывают в уравнение окислительно-восстановительной реакции как основные стехиометрические коэффициенты: 2FeCl3 + H2S → 2FeCl2 + S + HCl.
5. Подбирают стехиометрические коэффициенты остальных участников реакции: 2FeCl3 + H2S = 2FeCl2 + S + 2HCl.
Метод электронно-ионных полуреакций применяют при составлении уравнений реакций, протекающих в водном растворе, а также реакций с участием веществ, в которых трудно определить степени окисления элементов. Согласно этому методу выделяют следующие главные этапы составления уравнения реакций:
1. Записывают общую молекулярную схему процесса с указанием восстановителя, окислителя и среды, в которой протекает реакция (кислотная, нейтральная или щелочная). Например:
SO2 + K2Cr2O7 + H2SO4(разб.) → ...
2. Учитывая диссоциацию электролитов в водном растворе, данную схему представляют в виде молекулярно-ионного взаимодействия. Ионы, степени окисления атомов которых не изменяются, в схеме не указывают, за исключением ионов Н+ и ОН-:
SO2 + Cr2O72– + H+ → ...
3. Определяют степени окисления восстановителя и окислителя, а также продуктов их взаимодействия:
окисление восстановителя: | восстановление окислителя: |
S+4O2 → (S+6O4) 2– | (Cr+62O7)2–→ 2Cr3+ |
4. Записывают материальный баланс полуреакции окисления и восстановления:
окисление восстановителя: | восстановление окислителя: |
SO2+ 2H2O – 2e → SO42– + 4H+ | Cr2O72– + 14H+ + 6e → 2Cr3+ + 7H2O |
5. Суммируют полуреакции, учитывая принцип равенства отданных и принятых электронов:
SO2 + 2H2O – 2e = SO42–+ 4H+ ½∙3
Cr2O72– + 14H+ + 6e = 2Cr3+ + 7H2О ½∙1
3SO2+ 6H2O + Cr2O72– + 14H+ = 3SO42– + 12H+ + 2Cr3+ + 7H2О
сокращая одноименные частицы, получают общее ионно-молекулярное уравнение:
3SO2+ Cr2O72–+ 2H+ = 3SO42–+ 2Cr3+ + H2О.
6. Добавляют ионы, не участвовавшие в процессе окисления-восстановления, уравнивают их количества слева и справа, записывают молекулярное уравнение реакции:
3SO2 + K2Cr2O7 + H2SO4 (разб) = Cr2(SO4)3 + K2SO4 + H2O.
При составлении материального баланса полуреакций окисления и восстановления, когда изменяется число атомов кислорода, входящих в состав частиц окислителя и восстановителя, следует учитывать, что в водных растворах связывание или присоединение кислорода происходит с участием молекул воды и ионов среды.
В процессе окисления на один атом кислорода, присоединяющийся к частице восстановителя, в кислотной и нейтральной средах расходуется одна молекула воды и образуются два иона Н+; в щелочной среде расходуются два гидроксид-иона ОН- и образуется одна молекула воды.
В процессе восстановления для связывания одного атома кислорода частицы окислителя в кислотной среде расходуются два иона Н+ и образуется одна молекула воды; в нейтральной и щелочной средах расходуется одна молекула Н2О и образуются два иона ОН-(табл.2).
Таблица 2
Баланс атомов кислорода
в окислительно-восстановительных реакциях
число атомов кислорода в исходных веществах | среда | ||
кислая | нейтральная | щелочная | |
избыток | O2– + 2Н+→ Н2О | O2–+H2О→2OH- | O2–+H2О→2OH- |
недостаток | Н2О→ O2– + 2Н+ | Н2О→ O2– + 2Н+ | 2OH-→O2–+Н2О |
При составлении уравнений следует учитывать, что окислитель (или восстановитель) могут расходоваться не только в основной окислительно-восстановительной реакции, но и при связывании образующихся продуктов реакции, т.е. выступать в роли среды и солеобразователя. Примером, когда роль среды играет окислитель, служит реакция окисления металла в азотной кислоте:
3Cu + 2HNO3(окислитель) + 6HNO3(среда) = 3Cu(NO3)2 + 2NO + 4H2O
или 3Cu + 8HNO3(разб) = 3Cu(NO3)2 + 2NO + 4H2O.
Примером, когда восстановитель является средой, в которой протекает реакция, служит реакция окисления соляной кислоты дихроматом калия: 6HCl(вос-тель) + K2Cr2O7 + 8HCl(среда) = 2CrCl3 + 3Cl2 +2KCl + 7H2O
или 14HCl + K2Cr2O7 = 2CrCl3 + 3Cl2 +2KCl + 7H2O.
При расчете количественных, массовых и объемных соотношений участников окислительно-восстановительных реакций, используют основные стехиометрические законы химии, и, в частности, закон эквивалентов, учитывая, что число эквивалентности окислителя равно числу электронов, которые принимает одна формульная единица окислителя, а число эквивалентности восстановителя равно числу электронов, которые отдает одна формульная единица восстановителя.