О способах выражения концентраций веществ в растворах
В технологии выполнения химических анализов необходимым элементом является приготовление растворов химических веществ. В химическом анализе используются различные растворенные вещества (реагенты, буферные смеси, фиксирующие агенты, консерванты и т.п.) и растворители (вода, этанол и водно-спиртовые смеси, органические экстрагенты). В учебных пособиях, руководствах для химиков-аналитиков, нормативных документах (ГОСТах, РД, МУ) и справочной литературе можно встретить различные способы выражения концентраций. Ниже мы остановимся на некоторых из них, наиболее часто встречающихся, но сначала приведем краткую информацию по основополагающим единицам измерений, применяющихся при описании различных способов выражения концентраций химических веществ в растворах*.
Масса вещества обозначается как m(X) (где X – химический символ вещества) и обычно измеряется в граммах или миллиграммах.
За единицу количества вещества n(X) принят моль. Масса одного моля вещества называется молярной массой вещества. Последняя обозначается буквой «М» и обычно измеряется в г/моль. Например, М(Cu) = 63,54 г/моль, М(Н2SO4) = 98,08 г/моль.
Наряду с единицей количества вещества используется также единица количества вещества эквивалентов n[(1/z)Х], определяемая как произведение числа эквивалентности z(X) на количество вещества n(X). При этом под эквивалентом подразумевают реальную или условную частицу вещества, которая в конкретной кислотно-основной реакции эквивалентна одному иону водорода, в окислительно-восстановительной реакции – одному электрону. Соответственно, число эквивалентности z(Х) определяется исходя из химической формулы вещества и типа химической реакции:
· для кислот z(Х) равно числу катионов водорода, способных замещаться катионами металлов. Например, z(НCl) = 1; z(Н2SO4) = 2;
· для гидроксидов z(Х) равно числу гидроксигрупп OH–. Например, z(NaOH) = 1; z(Al(OH)3) = 3;
· для солей z равно числу катионов водорода кислоты, замещенных катионами металла или аммония. Например, z(NaCl) = 1; z[Fe2(SO4)3] = 6.
Молярная масса эквивалента M[(1/z)X] есть отношение молярной массы M(X) вещества к числу эквивалентности. Например, M(1/1HCl) = 36,46/1=36,46 г/моль; M[1/6Fe2(SO4)3] = 399,88/6 = 66,65 г/моль.
Понятие «молярная масса эквивалента» равноценно прежнему «грамм-эквивалент», в современной литературе не используемому.
Молярная концентрация вещества (с) в моль/л – отношение количества растворенного вещества в молях (n) к объему раствора (V):
Молярная концентрация численно равна количеству молей вещества, содержащихся в 1 литре (1000 мл, 1 дм3) раствора.
Молярную концентрацию записывают следующим образом: с(НCl) = 3 моль/л; с(Н2SO4) = 2 моль/л.
Пример. Приготовление 50 мл раствора поваренной соли с молярной концентрацией 0,1 моль/л (т.е. с(NaCl) = 0,1 моль/л).
Молярная масса NaCl составляет М(NaCl) = 58 г/моль. В 1000 мл раствора с концентрацией с(NaCl)=0,1 моль/л должно содержаться n(NaCl) = 0,1 моль NaCl, или m(NaCl) = 5,8 г. В 50 мл раствора должно содержаться х г NaCl, определяемое по формуле:
Навеску в 0,29 г следует поместить в мерную колбу на 50 мл и долить дистиллированную воду до метки. Содержимое колбы перемешивать до полного растворения соли.
Молярная концентрация эквивалента** с[(1/z)Х] есть произведение молярной концентрации с(Х) на число эквивалентности z данного вещества, т.е. с[(1/z)Х] = с(Х)×z. Молярная концентрация эквивалента показывает количество вещества эквивалентов, содержащееся в 1 л раствора.
Для многих используемых в химическом анализе растворов (KCl, HCl, NaOH и др.) молярная концентрация эквивалентов веществ совпадает с их молярной концентрацией.
Размерность молярной концентрации эквивалентов вещества записывается в виде «моль/л экв.» («ммоль/л экв.»).
Пример. Приготовление 50 мл раствора сульфата алюминия c молярной концентрацией эквивалента 1 моль/л (т.е. c[(1/z)Al2(SO4)3] = 1 моль/л экв.).
Для сульфата алюминия число эквивалентности z[Al2(SO4)3] равно 6. c[Al2(SO4)3] = 1/6 = 0, 167 моль/л.
М[Al2(SO4)3] = 342 г/моль (27 × 2 + 32 × 3 + 16 × 12 = 342); следовательно, m[Al2(SO4)3] = 342 × 0,167 = 57 г.
Составляем пропорцию: 57 г Al2(SO4)3 должно содержаться в 1000 мл раствора, х г – в 50 мл раствора:
Следовательно, необходимо отвесить на весах 2,85 г Al2SO4, поместить эту навеску в мерную колбу на 50 мл и долить дистиллированную воду до метки. Содержимое колбы перемешивать до полного растворения соли.
Массовая доля (массовый процент, процентная концентрация) (w) в % – отношение массы растворенного вещества (mв) к общей массе раствора, т.е. сумме масс растворенного вещества и растворителя (mр):
Для относительно некрепких растворов, имеющих значение плотности, близкое 1 г/см3, часто пользуются такой разновидностью массовой доли, как массовая концентрация, измеряемая в мг/л (г/л, г/дм3 т.п.).
Пример. Приготовление 50 г раствора соли с массовой долей 5% (5%-ного раствора).
В 100 г раствора содержится 5 г соли, в 50 г раствора содержится – х г соли.
Отвесить 2,5 г соли, поместить ее в колбу (стакан) и добавить 47,5 мл воды. Перемешивать до полного растворения соли.
Мольная доля (N) – отношение числа молей данного компонента (n1) к сумме молей данного компонента и всех других компонентов раствора (растворителя и других растворенных веществ (n2):
Аналогично определяется объемная доля.
Моляльная концентрация (В) в моль/кг – отношение количества растворенного вещества в молях (n) к массе растворителя (m):
Часто встречаются также производные от единиц измерения концентраций: например, мг/л, мг/дм3, мг/см3, мг/мл, ммоль/л, г/мл (титр) и др. Наиболее употребимыми единицами в справочной литературе применительно к оценке содержания примесей в воде (например, значения ПДК) являются мг/л и ммоль/л экв.
Разбавленный раствор — раствор с низким содержанием растворённого вещества. Отметим, что не всегда разбавленный раствор является ненасыщенным — например, насыщенный 0,0000134М раствор практически нерастворимого хлорида серебра является очень разбавленным. Граница между разбавленным и концентрированным растворами весьма условна.
Реальными называются растворы, которые не подчиняются законам идеальных растворов. Обычно они составлены из компонентов с различными свойствами, строением молекул и силами взаимодействия между молекулами компонентов. Образование таких растворов сопровождается изменением объема и тепловыми эффектами. С уменьшением концентрации реального раствора его свойства приближаются к свойствам идеального раствора.
К идеальным разбавленным растворам относятся растворы с концентрацией меньше 1 моль на 1000 г растворителя.
31 Процессы и явления, протекающие при образовании растворов. Растворимость. Влияние различных факторов на растворимость веществ.
Растворы - однородная многокомпонентная система, состоящая из растворителя, растворённых веществ и продуктов их взаимодействия.
По агрегатному состоянию растворы могут быть жидкими (морская вода), газообразными (воздух) или твёрдыми (многие сплавы металлов).
Размеры частиц в истинных растворах - менее 10-9 м (порядка размеров молекул).
Ненасыщенные, насыщенные и перенасыщенные растворы
Если молекулярные или ионные частицы, распределённые в жидком растворе присутствуют в нём в таком количестве, что при данных условиях не происходит дальнейшего растворения вещества, раствор называется насыщенным. (Например, если поместить 50 г NaCl в 100 г H2O, то при 20ºC растворится только 36 г соли).
Насыщенным называется раствор, который находится в динамическом равновесии с избытком растворённого вещества.
Поместив в 100 г воды при 20ºC меньше 36 г NaCl мы получим ненасыщенный раствор.
При нагревании смеси соли с водой до 100C произойдёт растворение 39,8 г NaCl в 100 г воды. Если теперь удалить из раствора нерастворившуюся соль, а раствор осторожно охладить до 20ºC, избыточное количество соли не всегда выпадает в осадок. В этом случае мы имеем дело с перенасыщенным раствором. Перенасыщенные растворы очень неустойчивы. Помешивание, встряхивание, добавление крупинок соли может вызвать кристаллизацию избытка соли и переход в насыщенное устойчивое состояние.
Ненасыщенный раствор - раствор, содержащий меньше вещества, чем в насыщенном.
Перенасыщенный раствор - раствор, содержащий больше вещества, чем в насыщенном.
Растворение как физико-химический процесс
Растворы образуются при взаимодействии растворителя и растворённого вещества. Процесс взаимодействия растворителя и растворённого вещества называется сольватацией (если растворителем является вода - гидратацией).
Растворение протекает с образованием различных по форме и прочности продуктов - гидратов. При этом участвуют силы как физической, так и химической природы. Процесс растворения вследствие такого рода взаимодействий компонентов сопровождается различными тепловыми явлениями.
Энергетической характеристикой растворения является теплота образованияраствора, рассматриваемая как алгебраическая сумма тепловых эффектов всех эндо- и экзотермических стадий процесса. Наиболее значительными среди них являются:
– поглощающие тепло процессы - разрушение кристаллической решётки, разрывы химических связей в молекулах;
– выделяющие тепло процессы - образование продуктов взаимодействия растворённого вещества с растворителем (гидраты) и др.
Если энергия разрушения кристаллической решетки меньше энергии гидратации растворённого вещества, то растворение идёт с выделением теплоты (наблюдается разогревание). Так, растворение NaOH – экзотермический процесс: на разрушение кристаллической решётки тратится 884 кДж/моль, а при образовании гидратированных ионов Na+ и OH- выделяется соответственно 422 и 510 кДж/моль.
Если энергия кристаллической решётки больше энергии гидратации, то растворение протекает с поглощением теплоты (при приготовлении водного раствора NH4NO3 наблюдается понижение температуры).
Растворимость
Предельная растворимость многих веществ в воде (или в других растворителях) представляет собой постоянную величину, соответствующую концентрации насыщенного раствора при данной температуре. Она является качественной характеристикой растворимости и приводится в справочниках в граммах на 100 г растворителя (при определённых условиях).
Растворимость зависит от природы растворяемого вещества и растворителя, температуры и давления.
Природа растворяемого вещества. Кристаллические вещества подразделяются на:
P - хорошо растворимые (более 1,0 г на 100 г воды);
M - малорастворимые (0,1 г - 1,0 г на 100 г воды);
Н - нерастворимые (менее 0,1 г на 100 г воды).
Природа растворителя. При образовании раствора связи между частицами каждого из компонентов заменяются связями между частицами разных компонентов. Чтобы новые связи могли образоваться, компоненты раствора должны иметь однотипные связи, т.е. быть одной природы. Поэтому ионные вещества растворяются в полярных растворителях и плохо в неполярных, а молекулярные вещества - наоборот.
Влияние температуры. Если растворение вещества является экзотермическим процессом, то с повышением температуры его растворимость уменьшается (Например,Ca(OH)2 в воде) и наоборот. Для большинства солей характерно увеличение растворимости при нагревании.
Практически все газы растворяются с выделением тепла. Растворимость газов в жидкостях с повышением температуры уменьшается, а с понижением увеличивается.
Влияние давления. С повышением давления растворимость газов в жидкостях увеличивается, а с понижением уменьшается. Закон Авогадро (А. Авогадро, 1811) Закон сохранения массы (М.В. Ломоносов, 1748) Ионные реакции. ГидролизКлассификация неорганичеких веществКонцентрация вещества Концентрация растворов Масса атомов и молекулМоль, молярная массаОкислительно-восстановительные реакции Основные классы неорганических соединений Основные понятия и законы химии Произведение растворимостиРастворы, растворимость Скорость химических реакций Строение атома Теория электролитической диссоциации Химическая связь Химическое равновесие Электрохимия.