Химия элементов V-VII групп и их соединений

Азот и фосфор являются элементами VА группы периодической системы Д. И. Менделеева. На внешнем энергетическом уровне атомов этих элементов находится пять электронов s2p3, из них три p-электрона. Поэтому в нормальном состоянии они проявляют валентность, равную трем. Наибольшее изменение в химических свойствах элементов VА группы наблюдается при переходе от азота к фосфору. В атомах азота внешним энергетическим уровнем является второй, содержащий только s- и p-подуровни, а подуровень d отсутствует. Атомы азота при переходе в возбужденное состояние могут увеличить число непарных

электронов максимум до четырех и при этом за счет потери одного электрона. В этом случае образуется электронная конфигурация s1p3, а азот становится четырехвалентным, как в ионе [NН4]+. Поэтому азот не проявляет валентности, равной пяти. В атомах фосфора наружным энергетическим уровнем является третий, состоящий из трех подуровней: s, p и d. При возбуждении атомов фосфора увеличение числа непарных электронов происходит за счет использования d-подуровня с образованием электронной конфигураций s1p3d1, поэтому фосфор в отличие от азота может проявлять валентность, равную пяти. Размеры атомов азота и фосфора меньше, а энергия ионизации этих элементов соответственно больше, чем углерода и кремния. В связи с этим азот и фосфор при химических реакциях не теряют электронов и не превращаются в элементарные катионы. Сродство к электрону этих элементов незначительно и поэтому они, как правило, не превращаются и в элементарные анионы. Азот и фосфор образуют соединения как с кислородом, так и с водородом; только с ковалентными связями. Таким образом, азот и фосфор являются неметаллами. Причем свойства неметаллов у них выражены сильнее, чем у углерода и кремния.

Азот в элементарном состоянии химически инертен. Для начала заметной реакции между азотом и кислородом необходима температура около 2000° С. Фосфор же (особенно белый) очень активен —он соединяется с кислородом уже при комнатной температуре. С водородом азот и фосфор, образуют летучие соединения с общей формулой ЭН3: NНз — аммиак и РН3 — фосфин, значительно отличающиеся по химическим свойствам. Молекулы NН3 полярны, так как электроотрицательность азота равна 3, а водорода —2,1.

Общие электронные пары смещены к атомам азота и окислительное число азота в аммиаке равно —3. Молекулы РН3 неполярны, так как электроотрицательности фосфора и водорода одинаковы и равны 2,1.

Аммиак при обычных температурах устойчив, а при высоких температурах обратимо разлагается:

2NН3↔ЗН2+N2

В результате этого аммиак при высоких температурах проявляет восстановительные свойства. Фосфин неустойчив. На воздухе он очень быстро окисляется и является сильным восстановителем:

2РН3+4O2=2Р2O5+ЗН2О

Аммиак взаимодействует с водой с образованием гидрата NН3.Н2О, ионов аммония и гидроксид-ионов:

32О↔NН3.Н2О↔NH4++ОН-

Поэтому растворы NН3 в воде обладают щелочной реакцией. Фосфин слабо растворим в воде. Аммиак взаимодействует с кислотами, присоединяет ион Н+, образуя стабильный комплексный катион [NН4]+. Аналогичный катион [РН4]+ фосфин образует лишь при взаимодействии с очень сильными кислотами.

Азот и фосфор образуют с металлами химические соединения, в которых они играют роль электроотрицательных элементов. Эти соединения получили названия нитридов и фосфидов. По типу химической связи между металлами и азотом или фосфором нитриды и фосфиды могут быть разделены на три группы: а) солеподобные, или ионные, б) ковалентные и в) металлоподобные.

К ионным нитридам и фосфидам относятся соединения азота или фосфора с металлами щелочными, щелочноземельными и IВ и IIВ групп периодической системы. В этих нитридах и фосфидах азот и фосфор находятся в состоянии ионов N3- и Р3- . Но так как эти ионы не могут существовать в водных растворах, то такие нитриды и фосфиды устойчивы только лишь в сухой атмосфере. В присутствии же воды или растворов кислот они энергично с ними взаимодействуют с выделением NН3 и РН3.

К ковалентным нитридам и фосфидам относятся соединения азота или фосфора с элементами IIIА и IVА групп периодической системы, таковы, например, нитриды —ВN, А1N, Si3N4, фосфиды — ВР, А1Р, GаР, ZnР. Ковалентные нитриды и фосфиды устойчивы по отношению к воде, кислотам и против действия различных окислителей. Обладают они и термоустойчивостью. К металлоподобным нитридам и фосфидам относятся соединения азота или фосфора с металлами IIIВ — VIIIВ групп периодической системы, лантаноидами, актиноидами, т. е. с металлами, атомы которых имеют недостроенные внутренние d- и f-подуровни. Состав металлоподобных нитридов и форфидов не отвечает обычным валентностям этих элементов, например: нитриды — ТiN, Сr2N, СrN, Мn3N2, ZnN, фосфиды — Тi3Р, ТiР, Сr2Р, СrР. В структурном отношении металлоподобные нитриды и фосфиды представляют собой продукты внедрения атомов азота или фосфора в кристаллические решетки металлов.

Как правило, они тугоплавки, обладают высокой твердостью, жаростойкостью, химической стойкостью и металлической электропроводностью.

С кислородом азот образует ряд оксидов: N2O, NO, N2O3, NO2 двуокись азота, N2О4 и N2О5. Все оксиды азота химически активны. Из них окись азота обладает ярко выраженными восстановительными свойствами.

Всё же остальные оксиды азота проявляют преимущественно свойства окислителей.

Фосфор образует с кислородом несколько оксидов, но важное значение имеют два: Р2О3 и Р2О5. Из них Р2О3, как и фосфористая кислота, проявляет восстановительные свойства.

Высшие оксиды азота, начиная с N2О3, являются кислотными. Оксиды фосфора Р2О3 и Р2О5 также проявляют кислотные свойства.

Мышьяк, сурьма и висмут, подобно азоту и фосфору, содержат на своем внешнем энергетическом уровне электронную группировку s2p3. Вместе с азотом и фосфором они составляют VА группу периодической системы элементов. Так же как и фосфор, эти элементы в нормальном состоянии могут быть трехвалентными, а в возбужденном пятивалентными вследствие образования группировки s1p3d1. В связи с ростом радиусов атомов, уменьшением энергии ионизации этим элементам свойственны и металлические свойства, усиливающиесяот мышьяка к висмуту.

Группу VIА составляют О, S, Sе, Те и Ро. На внешнем энергетическом уровне атомов этих элементов находится шесть электронов s2p4. Из них непарные только два p-электрона, что и объясняет их окислительное число —2 в нормальном состоянии. Элементы S — Ро, атомы которых содержат энергетический d-подуровень, могут быть и четырех- и шестивалентными. Размеры атомов О — Ро соответственно меньше, чем в группе N — Вi. Поэтому атомы О — Ро не теряют электронов и не превращаются в элементарные катионы. Сродство же к электрону высоко и высока склонность к присоединению электронов. Однако ионы Э2- установлены только у простых соединений этих элементов с активными металлами в кристаллическом состоянии и в расплавах. В водных же растворах ионы Э2- неустойчивы и подвергаются гидролизу:

Э2- 2O = 2ЭН - + 2OН-

Все элементы этой подгруппы являются неметаллами. Соединения серы, селена и теллура с кислородом образованы ковалентными связями. С водородом они образуют соединения типа Н2Э (Н2О, Н2S, Н2Sе, Н2Те). Из них вода является амфотерным электролитом, а остальные, растворяясь в воде, дают кислоты, сила которых возрастает от Н2S к Н2Те. Вода проявляет и окислительные и восстановительные свойства, водородные соединения S, Sе, Те — восстановители, активность которых возрастает в ряду Н2S, Н2Sе, Н2Те. Окислительное число кислорода, серы, селена и теллура в этих соединениях равно —2.

С кислородом сера, селен и теллур образуют два ряда соединений типа ЭО2 с окислительным числом +4 и ЭО3 с окислительным числом +6.

Ванадий, ниобий и тантал составляют VВ группу периодической системы. В невозбужденном состоянии электронные группировки внешних энергетических уровней атомов этих элементов несколько отличаются друг от друга, а именно: у атомов ванадия —ЗйЧа2, ниобия—4^55' и тантала —б^ба2. Таким образом, в невозбужденном состоянии электронными аналогами являются только ванадий и тантал. В возбужденном состоянии, когда один из 5-электронов ванадия и тантала переходит на другой подуровень, и все пять электронов внешних уровней становятся непарными, т. е. валентными, все три элемента являются электронными аналогами. Наличие на внешних электронных уровнях атомов только д.- и х-электронов характеризует эти элементы как металлы. По внешнему виду

это серые блестящие металлы с высокими температурами плавления и кипения, не изменяющиеся в воздухе.

Элементам группы ванадия свойственны переменные окислительные числа: +2, +3, +4 и +5. Наиболее устойчивыми из них являются соединения, в которых окислительные числа элементов +5. Все соединения низших степеней окисления являются восстановителями, легко окисляющимися до окислительного числа +5. Восстановительные свойства этих соединений усиливаются от V к Та.

В свободном состоянии при обычной температуре все элементы устойчивы по отношению к воздуху, воде, щелочам и кислотам.

Ванадий может быть окислен только азотной кислотой, а ниобий и тантал — лишь в смеси азотной и фтороводородной кислот.

При высоких температурах ванадий, ниобий и тантал активно реагируют с кислородом, галогенами, серой, азотом, углеродом и другими окислителями. Вступая в реакцию с кислородом, они образуют оксиды общей формулы ЭдОд. Путем восстановления оксида Э^Од можно получить оксиды ЭО (точнее Э^Од), Э^Оз и ЭОд. Изменение характера оксидов можно проследить на примере оксидов ванадия:

УО УА, УОг УА

основной амфотерный кислотный

восстановительные свойства

окислительные—нарастают.

уменьшаются, а

Соединения ванадия (II) и ванадия (III) являются солями и в растворах существуют в виде ионов V24" и V3'1'.

Ниобий и тантал, соединяясь со всеми галогенами, образуют соединения ЭГд, ванадий же образует аналогичное соединение только с фтором, а с остальными галогенами — только галиды ванадия (IV), например УС^. Для высшей степени окисления известны тригалоксиды ванадия (V), например УОС1з.

С азотом, углеродом, кремнием и бором все три элемента образуют только металлоподобные нитриды, карбиды, силиды и бориды — тугоплавкие соединения, обладающие металлической электропроводностью.

Хром, молибден и вольфрам составляют У1В группу периодической системы. В невозбужденном состоянии электронные группировки наружных энергетических уровней атомов не аналогичны: у хрома—3(1Ч81; у молибдена—4й°551 и у вольфрама—5йЧэ52. Такая структура внешних энергетических уровней характеризует эти элементы как металлы. Большое число валентных электронов позволяет этим элементам проявлять в своих соединениях перемен-

ные окислительные числа. Хрому в его соединениях свойственны окислительные числа+1,+2,+3,+4,+5 и+6; из них наибольшей устойчивостью обладают соединения Сг(Ш) и Сг(У1); совершенно неустойчивы соединения Сг(1), Сг(1У) и Сг(У); соединения Сг(П) существуют только в отсутствие окислителей — они очень активные восстановители. Молибдену и вольфраму в их соединениях свойственны окислительные числа +2, +3, +4 и +6, из них наиболее устойчивы соединения Мо(У1) и '\У(У1).

Хром, молибден и вольфрам при обыкновенной температуре реагируют только с фтором. С остальными элементарными окислителями — кислородом, серой, галогенами, азотом, углеродом и др. — они реагируют лишь при высоких температурах. Активность металлов падает в ряду Сг-+'\У. Это подтверждается их стандартными потенциалами.

Р, С1, Вг, I и А1 составляют УНА группу периодической системы элементов. На внешнем энергетическом уровне атомов этих элементов находятся семь электронов 52/?6, из которых только один р-электрон является непарным. Увеличение числа непарных электронов при возбуждении атомов для фтора невозможно, а для остальных элементов происходит за счет использования свободных орбиталей й-подуровня. Электроотрицательность фтора (4,0) больше, чемлюбого другого элемента, поэтому окислительное число фтора во всех его соединениях равно —1. Остальные элементы этой группы, кроме соединений, в которых их окислительное число равно —1, образуют соединения, в которых их окислительные числа +1, +3, +5, +7 (кроме брома).

Размеры атомов этих элементов соответственно меньше, чем элементов группы О — Ро, а сродство к электрону значительно больше, чем элементов группы кислорода. Поэтому галогены при химических реакциях проявляют окислительные свойства, принимают по одному электрону и превращаются в ионы Э~:

Э+^=Э-

Окислительная способность галогенов ослабляется от Р к А1. Галогены не теряют электронов и не превращаются в элементарные катионы. Соединения галогенов с кислородом и другими неметаллами образованы ковалентными связями. Элементы этой подгруппы являются наиболее типичными неметаллами. С водородом галогены образуют соединения типа НЭ — галоводороды. Галоводороды полярные ковалентные летучие соединения.

Галоводороды хорошо растворимы в воде. Они при этом вступают в реакции с водой и образуют галоводородные кислоты:

НЭ+НгО^НзО-ь

Для НР равновесие сильно смещено влево и раствор НР является слабой кислотой. Для остальных галоводородов это равновесие практически смещено вправо, и их растворы представляют собой сильные кислоты.

Галогены соединяются почти со всеми металлами, образуя галиды металлов. В галидах щелочных и щелочноземельных металлов химические связи в основном ионные.

Восстановительные свойства у ионов С1""" слабые, у ионов Вг~ более сильные и очень активные у ионов 1~.

Галогены непосредственно с кислородом не соединяются, но косвенным путем образуют различные соединения, в которых связь Э — О ковалентна. Практически наиболее важны кислородные соединения хлора. Хлор образует оксиды: ОдО — полуокись, СЮ^ — двуокись, С^О^ — полусемиокись. Им соответствуют гидроксиды: НС10 — хлорноватистая кислота, ее соли гипохлориты;

НСЮд — хлористая кислота, ее соли хлориты; НСЮд — хлорноватая кислота, ее соли хлораты; НСЮд — хлорная кислота, ее соли перхлораты. Сила этих кислот возрастает от НС10 к НС10,.

Все кислородные соединения галогенов являются окислителями. Они окисляют главным образом в кислой среде и восстанавливаются при этом в отрицательно заряженные ионы С1~:

Элементы Мп, Тс и Ке составляют VI 1В группу периодической системы. На внешнем энергетическом уровне атомов этих элементов находится по два 5-электрона, а на подуровне и предпоследнего энергетического уровня — по пять й-электронов, т. е. для них характерна электронная группировка с^д2. В невозбужденном состоянии непарными являются пять й-электронов, а при возбуждении — все семь электронов внешнего и предвнешнего энергетических уровней становятся непарными, т. е. валентными. Этим элементам свойственно максимальное окислительное число +7.

Из элементов группы марганца технеций в природе не встречается и получен искусственным путем в небольших количествах.

Марганец и рений в свободном состоянии — типичные металлы с металлическим блеском.

Марганец относится к активным металлам. На воздухе он окисляется и покрывается видимой пленкой оксидов, вначале красноватой, затем почти черной. С водой на холоду марганец взаимодействует очень медленно; при повышении температуры скорость реакции окисления марганца водой увеличивается. В разбавленных кислотах марганец растворяется с образованием солей марганца (II). В растворах щелочей марганец устойчив. В соединениях марганец имеет окислительные числа +2, +3, +4, +6 и +7. Наиболее устойчивы соединения Мп (II), Мп (IV) и Мп (VII).

С повышением окислительного числа характер оксидов и гидроксидов изменяется от основногодо кислотного:

← нарастание основных свойств

МпО Мn2О3 МnО2 (МnО3) Мn2О7

нарастание кислотных свойств→

Мn(ОН)2 Мn(ОН)3 Мn(ОН)4 Н2МnО4 НМnО4

В соединениях Мn(II) и Мn(III) химические связи ближе к ионным, а соединения, в которых марганец имеет более высокие степени окисления, образованы ковалентными связями. Для соединений Мn(II) и Мn(III) характерны восстановительные свойства, а для соединений Мn(IV), Мn(VI) и Мn(VII) —окислительные свойства, которые наиболее активно проявляются у Мn(VII).

Из соединений марганца с галогенами устойчивы только дигалиды МnГ2, а остальные его галиды легко разлагаются на дигалид и свободный галоген.

Рений—малоактивный металл, он устойчив по отношению к воздуху, воде, разбавленным кислотам. Двуокись рения в отличие от двуокиси марганца — восстановитель.

С серой марганец образует сульфид МnS, а рений — сульфиды RеS2 и Rе2S7. С азотом, углеродом, кремнием и бором марганец и рений образуют нитриды, карбиды, силиды и бориды различного состава; некоторые из них обладают металлической электропроводностью.

ЛЕКЦИЯ 9

Элементы группы углерода.

Углерод и кремний — элементы IVА группы периодической системы Д. И. Менделеева. На внешнем энергетическом уровне атомов этих элементов находится четыре электрона (s2p2), из которых только 2р-электрона непарные. При поглощении незначительного количества энергии атомы этих элементов переходят в возбужденное состояние, причем один из s-электронов перемещается на подуровень p и электронная конфигурация наружного энергетического уровня становится sр3. В этом состоянии все электроны внешнего уровня непарные. Поэтому углерод и кремний образуют соединения, в которых им свойственны степени окисления как +4, так и —4. Размеры атомов углерода и кремния соответственно меньше, чем атомов бора и алюминия. В результате этого энергия ионизации атомов этих элементов высока. Сродство к электрону у них — величина небольшая. Поэтому у этих элементов слабо выражены как способность к потере, так и к присоединению электронов. Многочисленные соединения углерода и кремния образованы при помощи ковалентных связей. Таким образом, углерод и кремний являются неметаллами.

В обычных условиях углерод и кремний весьма инертны, но при высоких температурах они становятся химически активными, по отношению ко многим металлам и неметаллам.

Углерод непосредственно соединяется со многими металлами, образуя карбиды — соединения, в которых углерод электроотрицателен. Степень окисления углерода в карбидах различна. Различны и химические свойства карбидов. С активными металлами — щелочными и щелочноземельными — углерод образует солеподобные карбиды, в которых атомы углерода связаны между собой тройной связью, как, например, в СаС2. Степень окисления углерода в них —1. При взаимодействии этих карбидов с водой они подвергаются гидролизу с образованием гидроксида металла и ацетилена:

СаС2 + 2Н2О = Са(ОН)2 + Н2С2

С металлами средней активности углерод образует также солеподобные карбиды, но в них степень окисления углерода —4, как, например, в Ве2С и в А14С3. Эти карбиды также подвергаются гидролизу, но с выделением метана:

Ве2С + 4Н2О = 2Ве(ОН)2 + СН4

A14С3+12Н2О==4А1(ОН)3 + ЗСН4

С малоактивными металлами получаются металлоподобные карбиды, химически инертные, твердые, с высокими температурами плавления и металлической электропроводностью. Состав таких карбидов самый разнообразный и не соответствует обычным степеням окисления, например: VС, W2С, WС, Fe3С, Сr23С6. Металлоподобные карбиды не взаимодействуют с водой и кислотами.

Кремний также дает соединения с металлами — силиды, из которых солеподобны только силиды щелочных и щелочноземельных металлов.

С водородом углерод образует очень большое число соединений —углеводородов, простейшим из которых является метан СН4. Кремний же с водородом непосредственно не соединяется. Аналогичные углеводородам кремневодороды образуются при действии соляной кислоты на силид магния Мg2Si Кремневодороды в отличие от углеводородов неустойчивы и самовоспламеняются при соприкосновении с воздухом.

В соединениях с кислородом углерод и кремний образуют соединения, в которых их окислительное число +2 и +4; СО, SiO, СО2 и SiO2. Более устойчивы из них СО2 и SiO2. Оксиды СО и SiO относятся к несолеобразующим, СО2 и SiO2 обладают кислотными свойствами. Им соответствуют кислоты угольная Н2СО3 и кремниевая Н2SiO3, причем кислотные свойства кремниевой кислоты выражены слабее, чем угольной.

Углерод и кремний в свободном состоянии и их соединения, в которых они проявляют степень окисления +2, — обычно восстановители. Вода и разбавленные кислоты не действуют на углерод и кремний. Кремний взаимодействует со щелочами, вытесняя водород и образуя соли кремниевой кислоты.

Двуокись углерода при высоких температурах обладает окислительными свойствами. Щелочные и щелочноземельные металлы горят в атмосфере СО2.

Вместе с углеродом и кремнием германий, олово и свинец составляют IVА группу периодической системы элементов. На наружном энергетическом уровне атомов этих элементов находится четыре электрона s2p2. Этим элементам свойственны обычно окислительные числа +2 и +4, причем число +4 возникает вследствие перехода во время химических реакций одного из s-электронов на уровень р. Ввиду роста радиусов атомов и уменьшения энергии ионизации в группе IVА наблюдается усиление металлических свойств. Германий по электрическим свойствам является полупроводником. Другие свойства металлов у него выражены очень слабо. В своих соединениях германий характеризуется ковалентным характером связей.

Олово и свинец — металлы менее активные и типичные, чем металлы IА, IIА и IIIА групп. Это видно из преимущественно ковалентного характера связей в соединениях этих элементов, в которых их степень окисления +4. Также и во многих соединениях этих элементов, где их степень окисления +2, связи имеют смешанный характер.

Диоксиды этих элементов и соответствующие им гидроксиды обладают в основном кислотными свойствами, которые ослабляются от германия к свинцу. Диоксиды SnО2 и РЬО2 и их гидраты проявляют амфотерные свойства.

Оксиды германия, олова и свинца: GеО, SnO и РЬО и гидроксиды Gе(ОН)2, Sn(ОН)2 и РЬ(ОН)2 представляют собой типичные амфотерные соединения.

В свободном состоянии все элементы этой подгруппы при обычных температурах довольно инертны. Под действием кислорода воздуха германий и олово не изменяются. Свинец же кислородом воздуха окисляется и покрывается слоем оксидов, которые при низких температурах предохраняют свинец от дальнейшего окисления.

При повышении температуры элементы этой подгруппы легко соединяются с кислородом и образуют двуокиси GеО2, SnО2, а свинец окисляется до окиси РЬО. Элементы этой подгруппы в свободном состоянии являются восстановителями. Для этих элементов, кроме свинца, наиболее устойчивой является степень окисления +4. Поэтому производные германия (II) и олова (II) являются восстановителями.

У свинца же наиболее устойчивы соединения, в которых его степень окисления +2. Соединения свинца (IV) являются окислителями. Разбавленные серная и соляная кислоты не действуют на германий. Олово же и свинец хотя и медленно, но реагируют с разбавленными кислотами. При этом свинец очень быстро покрывается пленкой РЬSO4, предохраняющей металл от дальнейшего разрушения. С концентрированной НС1 олово реагирует при нагревании, вытес-

няя водород.

В азотной кислоте олово и свинец растворяются значительно скорее. Разбавленные щелочи медленно действуют на олово и свинец; реакция протекает скорее в концентрированных растворах щелочей, особенно при высокой температуре.

Не устойчив свинец по отношению ко многим органическим кислотам вследствие образования в таких случаях растворимых органических солей свинца. Однако за исключением этих случаев устойчивость олова и свинца высокая, что обусловлено невысокими отрицательными значениями их электродных потенциалов, а также образованием на их поверхности защитных пленок оксидов и солей.

Титан, цирконий и гафний составляют IVВ группу периодической системы. На наружном энергетическом уровне атомов этих элементов находится по 2 s-электрона и 2p- электрона размещены в подуровне d предпоследнего энергетического уровня. Иными словами, атомы этих элементов имеют одинаковую электронную конфигурацию наружных энергетических уровней d2s2, из которых непарны только 2d-электрона. Однако s-электроны легко переходят в возбужденное состояние и тогда все четыре электрона становятся непарными. В связи с этим титан, цирконий и гафний образуют соединения, в которых им свойственны окислительные числа +2, +3,+4, но устойчивыми являются только соединения высшей степени окисления. В соединениях Тi(IV), Zr(IV) и Hf(IV) химические связи, как правило, ковалентны. В соединениях низших степеней окисления осуществляются и ионные связи.

Диоксиды ТiO2, ZrO2 и HfO2, и соответствующие им гидроксиды, амфотерны, но с преобладанием основных свойств. Основные свойства диоксидов и их гидроксидов возрастают от Тi к Hf.

В свободном состоянии все элементы этой подгруппы устойчивы по отношению к воздуху и воде. При высоких температурах они становятся химически активными и соединяются с галогенами, кислородом, серой, азотом и углеродом.

Устойчивость титана на воздухе по отношению к воде объясняется тем, что металл покрыт прочной защитной пленкой TiO2.

При температуре 100° С титан медленно взаимодействует с водой с выделением водорода.

В разбавленных соляной и серной кислотах титан растворяется медленно. Устойчив титан и по отношению к растворам щелочей. Цирконий устойчив по

отношению к разбавленным растворам кислот — соляной, серной, фосфорной и азотной как на холоду, так и при нагревании. Щелочи также не действуют на цирконий.

Наши рекомендации