Направление окислительно-восстановительных реакций
Рассмотрим процессы, которые будут наблюдаться, если металлическую пластинку (электрод) опустить в воду. Поскольку все вещества в какой-то мере растворимы, в такой системе начнет протекать процесс перехода в раствор катионов металла с их последующей гидратацией. Освобождающиеся при этом электроны будут оставаться на электроде, сообщая ему отрицательный заряд. Отрицательно заряженный электрод будет притягивать катионы металла из раствора, в результате чего в системе установится равновесие:
M Mn+ + ne- ,
при котором электрод будет иметь отрицательный заряд, а прилегающий к нему слой раствора - положительный. Приведенное выше уравнение описывает полуреакцию, для которой окисленной формой являются катионы Mn+, а восстановленной формой - атомы металла М.
Рис. 26. Механизмы возникновения разности потенциалов на поверхности раздела
электрод – раствор.
Если в рассматриваемую систему ввести соль, отщепляющую при диссоциации катионы Mn+, равновесие сместится в сторону обратной реакции. При достаточно высоком значении концентрации Mn+ становится возможным осаждение ионов металла на электроде, который при этом приобретет положительный заряд, тогда как прилегающий к поверхности электрода слой раствора, содержащий избыток анионов, будет заряжен отрицательно. Знак заряда электрода в конечном итоге будет определяться химической активностью металла, способствующей появлению отрицательного заряда, и концентрацией катиона металла в растворе, увеличение которой способствует появлению положительного заряда. Однако в любом случае в такой системе формируется двойной электрический слой и возникает скачок потенциала на границе раздела электрод – раствор (рис. 26). Скачок потенциала на границе раздела электрод - раствор называется электродным потенциалом.
В рассмотренном нами примере металл электрода подвергался химическим изменениям. Это условие не является обязательным для возникновения электродного потенциала. Если какой-либо инертный электрод (графитовый или платиновый) погрузить в раствор, содержащий окисленную и восстановленную формы (ОФ и ВФ) какой-то полуреакции, то на границе раздела электрод - раствор также возникнет скачок потенциала. Возникновение электродного потенциала в этом случае будет определяться протеканием полуреакции:
ОФ + ne- ВФ
Поскольку обмен электронами идет через поверхность электрода, который в данном случае играет роль посредника, смещение равновесия в сторону прямой реакции будет способствовать появлению на электроде положительного заряда, а в сторону обратной реакции - отрицательного. Электрод при этом не будет изменяться химически; он будет лишь служить источником или приемником электронов. Таким образом, любая окислительно-восстановительная реакция может быть охарактеризована определенным значением окислительно-восстановительного потенциала – разности потенциалов, возникающей на поверхности инертного электрода, погруженного в раствор, содержащий окисленную и восстановленную форму вещества.
Значение электродного потенциала зависит от природы и концентрации окисленной и восстановленной форм, а также от температуры. Эта зависимость выражается уравнением Нернста:
,
где R - универсальная газовая постоянная, Т - абсолютная температура, n - число электронов, соответствующее переходу окисленной формы в восстановленную, F - число Фарадея (96485 Кл·моль-1), Cox и Cred - концентрации окисленной и восстановленной формы, x и y - коэффициенты в уравнении полуреакции, Е˚ - электродный потенциал, отнесенный к стандартным условиям (р = 101,326 кПа, Т = 298 К, Cox = Cred =1 моль/л). Величины Е˚ называют стандартными электродными потенциалами.
При температруе 298 К уравнение Нернста легко преобразуется к более простому виду:
Абсолютные значения электродных потенциалов измерить невозможно, однако можно определить относительные значения электродных потенциалов, сравнивая измеряемый потенциал с другим, принятым за эталон. В качестве такого эталонного потенциала используют стандартный потенциал водородного электрода. Водородный электрод представляет собой платиновую пластинку, покрытую слоем пористой платины (платиновая чернь) и погруженную в раствор серной кислоты с активностью катионов водорода, равной 1 моль/л, при температуре 298 К. Платиновая пластинка насыщается водородом под давлением, равным 101,326 кПа (рис. 27). Абсорбированный платиной водород является более активным компонентом, чем платина, и электрод ведет себя так, как если бы он бы выполнен из водорода. В результате в системе возникает электродный потенциал за счет полуреакции
Н2 ¾ 2Н ¾® 2Н+ + 2е-
Этот потенциал условно принимают равным нулю. Если окисленная форма той или иной полуреакции является более активным окислителем, чем катион водорода, значение электродного потенциала этой полуреакции будет величиной положительной, в противном случае - отрицательной. Величины стандартных электродных потенциалов приводят в справочных таблицах.
Рис. 27. Схема строения водородного электрода.
Уравнение Нернста позволяет рассчитывать значения электродных потенциалов при различных условиях. Например, требуется определить электродный потенциал полуреакции:
MnO4- + 8H+ + 5e- = Mn2+ + 4H2O,
если температура равна 320 К, а концентрации MnO4-, Mn2+ и Н+ равны соответственно 0,800; 0,0050 и 2,00 моль/л. Значение Е˚ для этой полуреакции равно 1,51 В. Соответственно
Направление окислительно-восстановительных реакций. Поскольку электродный потенциал связан с изменением свободной энергии Гиббса соотношением:
ΔG° = -nFE°,
электродные потенциалы могут быть использованы для определения направления окислительно-восстановительных процессов.
Пусть окислительно-восстановительной реакции соответствуют полуреакции:
X(1) + n1e- = Y(1); ΔG°1 = -n1FE°1,
X(2) + n2e- = Y(2); ΔG°2 = -n2FE°2
Cовершенно очевидно, что одна из этих полуреакций должна протекать слева направо (процесс восстановления), а другая - справа налево (процесс окисления). Изменение энергии Гиббса для рассматриваемой реакции будет определяться разностью электродных потенциалов полуреакций
ΔG° = aΔG°2 - bΔG°1 = -nF(E°2 - E°1);
где a и b - множители, уравнивающие число отданных и присоединенных в процессе реакции электронов (n = an1 = bn2). Чтобы реакция протекала самопроизвольно величина ΔG должна быть отрицательной, а это будет иметь место тогда, когда Е2 > Е1. Таким образом, в процессе ОВР из двух окисленных форм восстанавливается та, для которой электродный потенциал больше, а из двух восстановленных форм окисляется та, для которой электродный потенциал меньше.
Пример. Определить направление реакции при стандартных условиях:
MnO4- + 5Fe2+ + 8H+ = Mn2+ + 5Fe3+ + 4H2O
Запишем уравнения перехода двух окисленных форм в восстановленные и по справочным таблицам найдем соответствующие значения электродных потенциалов:
Fe3+ + 1e- = Fe2+ │5 E°1 = 0,77 B
MnO4- + 8H+ + 5e- = Mn2+ + 4H2O │1 E°2 = 1,51 В
Поскольку E°2 > E°1, вторая полуреакция будет протекать слева направо, а первая полуреакция - справа налево. Таким образом, процесс будет протекать в направлении прямой реакции.
Гальванический элемент
Окислительно-восстановительные реакции, как уже указывалось, сопровождаются переносом электронов от восстановителя к окислителю. Если разделить процессы окисления и восстановления в пространстве, можно получить направленный поток электронов, т.е. электрический ток. Устройства, в которых химическая энергия окислительно-восстано-вительной реакции преобразуется в энергию электрического тока, называются химическими источниками тока или гальваническими элементами.
В простейшем случае гальванический элемент состоит из двух полуэлементов - сосудов, заполненных растворами соответствующих солей, в которые погружены металлические электроды. Полуэлементы соединены U-образной трубкой (сифоном), заполненной раствором электролита, или полупроницаемой мембраной, что дает возможность ионам переходить из одного полуэлемента в другой. Если электроды не соединены внешним проводником, то полуэлементы находятся в состоянии равновесия, обеспечиваемым определенным зарядом на электродах. Если же цепь замкнуть, равновесие нарушается, так как электроны начнут переходить с электрода, имеющего меньший электродный потенциал, на электрод с большим электродным потенциалом. В результате в системе начнет протекать окислительно-восстановительная реакция, причем на электроде с большим значением потенциала будет идти процесс восстановления, а на электроде с меньшим значением потенциала - процесс окисления. Электрод, на котором протекает реакция восстановления, называется катодом; электрод, на котором протекает реакция окисления - анодом.
Рис. 28. Схема строения медно-цинкового гальванического элемента.
В качестве примера рассмотрим элемент Даниэля-Якоби, который состоит из медного и цинкового электродов, погруженных в растворы сульфатов этих металлов (рис. 28). В этом элементе окисленными формами являются катионы Zn2+ и Cu2+, восстановленными формами - цинк и медь. Уравнения полуреакций для системы имеют вид:
Zn2+ + 2e- = Zn0; E°1 = -0,76 B
Cu2+ + 2e- = Cu0; E°2 = 0,34 B
Поскольку E°2 > E°1, вторая полуреакция будет протекать слева направо, а первая – справа налево, т.е. в системе будет протекать реакция:
Zn + Cu2+ = Zn2+ + Cu
Процесс будет идти до тех пор, пока не растворится цинковый электрод или не восстановятся все ионы меди. В случае медно-цинкового элемента катодом является медный электрод (на нем ионы Cu2+ восстанавливаются до металлической меди), а анодом - цинковый электрод (на нем атомы цинка окисляются до ионов Zn2+). Электродвижущая сила элемента равна разности электродных потенциалов катода и анода:
ΔЕ = Екатод - Е анод
При стандартных условиях ΔЕ = 0,34 - (-076) = 1,10 (В).
Для записи схемы гальванических элементов используют приведенную ниже форму:
Анод │ Анодный раствор ││ Катодный раствор │ Катод
Для анодного и катодного растворов указывают концентрации соответствующих ионов в момент начала работы гальванического элемента. Так, элементу Даниэля-Якоби с концентрациями CuSO4 и ZnSO4, равными 0,01 моль/л, отвечает схема:
Zn │ Zn2+ (0,01 M) ││ Cu2+ (0,01 M )│ Cu
Путем измерения ЭДС гальванических элементов определяют стандартные электродные потенциалы тех или иных полуреакций. Пусть, например, необходимо установить Е˚ полуреакции:
Fe3+ + 1e- = Fe2+
Для этого достаточно собрать гальванический элемент:
Pt│H2(г) (101,3 кПа), H+ (1M)││Fe3+ (1M), Fe2+ (1M) │Pt
и измерить его ЭДС, последняя равна 0,77 В. Отсюда:
E°(Fe+3/Fe+2) = DE + E°(H+/H) = 0,77 В + 0 = +0,77 В
Электролиз
Пропуская через раствор или расплав электролита электрический ток, можно осуществлять окислительно-восстановительные реакции, которые не протекают самопроизвольно. Процесс раздельного окисления и восстановления на электродах, осуществляемый за счет протекания электрического тока от внешнего источника, называется электролизом.
При электролизе анодом является положительный электрод, на котором протекает процесс окисления, а катодом - отрицательный электрод, на котором осуществляется процесс восстановления. Названия "анод" и "катод", таким образом, не связаны с зарядом электрода: при электролизе анод положителен, а катод отрицателен, а при работе гальванического элемента - наоборот. В процессе электролиза анод является окислителем, катод - восстановителем. Количественно процесс электролиза описывают законы М. Фарадея (1833 г.):
1. Масса выделившегося на электроде вещества пропорциональна количеству электричества, прошедшего через раствор или расплав.
2. Для выделения на электроде одного моля эквивалента любого вещества затрачивается одно и то же количество электричества.
Обобщенно законы Фарадея выражаются следущим уравнением:
,
где m - масса продукта электролиза, I - сила тока, t - время прохождения тока, F - константа, равная 96485 Кл.моль-1 (число Фарадея), Мэ - эквивалентная масса вещества.
Как уже указывалось, электролизу подвергаются как растворы, так и расплавы электролитов. Наиболее просто протекает электролиз расплавов. В этом случае на катоде происходит восстановление катиона, а на аноде - окисление аниона электролита. Например, электролиз расплава хлорида натрия протекает по уравнениям:
Катодный процесс: Na+ + 1e- = Na | 2
Анодный процесс: 2Cl- - 2e- = Cl2 | 1
Уравнение электролиза: 2NaCl = 2Na + Cl2
Электролиз растворов протекает значительно сложней, так как в этом случае электролизу могут подвергаться молекулы воды. При электролизе вода может и окисляться, и восстанавливаться соответственно следующим полуреакциям:
1. Восстановление воды (катодный процесс):
2Н2О + 2е- = Н2 + 2ОН-; Е° = -0,83 В
2. Окисление воды (анодный процесс):
2Н2О - 4е- = 4Н+ + О2; Е° = 1,23 В
Поэтому при электролизе водных растворов наблюдается конкуренция между электродными процессами с различными значениями электродных потенциалов. В идеальном случае на катоде должна протекать полуреакция с наибольшим значением электродного потенциала, а на аноде - полуреакция с наименьшим значением электродного потенциала. Однако для реальных процессов значение электродных потенциалов - не единственный фактор, влияющий на характер взаимодействия.
В большинстве случаев выбор между конкурирующими реакциями при электролизе можно сделать на основании следующих правил:
1. Если металл в ряду стандартных электродных потенциалов стоит правее водорода, то на катоде восстанавливается металл.
2. Если металл в ряду стандартных электродных потенциалов стоит левее алюминия (включительно), на катоде выделяется водород за счет восстановления воды.
3. Если металл в ряду стандартных электродных потенциалов занимает место между алюминием и водородом, на катоде идет параллельное восстановление металла и водорода.
4. Если электролит содержит анионы кислородсодержащих кислот, гидроксила или фторид-анион, на аноде окисляется вода. Во всех остальных случаях на аноде окисляется анион электролита. Такой порядок окисления восстановителей на аноде объясняется тем, что полуреакции:
F2 + 2e- = 2F-
отвечает очень высокий электродный потенциал (E° = 2,87 В), и она практически никогда не реализуется, если возможна другая конкурирующая реакция. Что же касается кислородсодержащих анионов, то продуктом их окисления является молекулярный кислород, которому соответствует высокое перенапряжение (0,5 В на платиновом электроде). По этой причине при электролизе водных растворов хлоридов на аноде окисляются ионы хлора, хотя электродный потенциал полуреакции
2Cl- - 2e- = Cl2; E° = 1,36 В
выше, чем электродный потенциал окисления воды (E° = 1,23 В).
На процесс электролиза оказывает влияние также материал электрода. Различают инертные электроды, которые не изменяются в процессе электролиза (графит, платина), и активные электроды, подвергающиеся при электролизе химическим изменениям.
Рассмотрим некоторые примеры электролиза растворов.
Пример 1. Электролиз водного раствора сульфата меди(II) с инертными электродами.
CuSO4 = Cu2+ + SO
Катодный процесс: Cu2+ + 2e- = Cu | 2
Анодный процесс: 2H2O - 4e- = 4H+ + O2 | 1
Уравнение электролиза: 2Cu2+ + 2H2O = 2Cu + 4H+ + O2
или 2СuSO4 + 2H2O = 2Cu + 2H2SO4 + O2
Пример 2. Электролиз водного раствора сульфата меди с медным анодом.
Катодный процесс: Сu2+ + 2e- = Cu
Анодный процесс: Cu0 - 2e- = Cu2+
Электролиз сводится к переносу меди с анода на катод.
Пример 3. Электролиз водного раствора сульфата натрия с инертными электродами.
Na2SO4 = 2Na+ + SO
Kатодный процесс: 2H2O + 2e- = H2 + 2OH- | 2
Анодный процесс: 2H2O - 4e- = 4H+ + O2 | 1
Уравнение электролиза: 2H2O = 2H2 + O2
Электролиз сводится к разложению воды.
Пример 4. Электролиз водного раствора хлорида натрия с инертными электродами.
NaCl = Na+ + Cl-
Катодный процесс: 2H2O + 2e- = H2 + 2OH- | 1
Анодный процесс: 2Cl- - 2e- = Cl2 | 1
Уравнение электролиза: 2Cl- + 2H2O = H2 + Cl2 + 2OH-
или 2NaCl + 2H2O = 2NaOH + H2 + Cl2
Электролиз широко используется в промышленности для получения ряда активных металлов (алюминия, магния, щелочных и щелочноземельных металлов), водорода, кислорода, хлора, гидроксида натрия, пероксида водорода, перманганата калия и ряда других практически важных веществ. Электролиз применяется для нанесения прочных металлических пленок с целью защиты металлов от коррозии.
Коллоидные растворы