Полимолекулярная адсорбция. Капиллярная конденсация

При адсорбции на пористых и порошкообразных адсорбентах (в фармации - активированный уголь, силикагель, другие сорбенты, применяемые, например, в газовой хроматографии, а также любые таблетки и лекарственные порошки), вид экспериментальной изотермы часто отличается от рассмотренной ранее, т. н. "лэнгмюровской". Наиболее часто имеет место так называемая S-изотерма, характерная для полимолекулярной адсорбции, при которой процесс не заканчивается образованием мономолекулярного слоя, а продолжается и после этого (рис. 3,6):

 
  Полимолекулярная адсорбция. Капиллярная конденсация - student2.ru

Рис. 3.6. S-изотерма для адсорбции газов на твёрдых адсорбентах

Кроме S-изотермы нередко получаются изотермы и других, более сложных конфигураций, например, ступенчатые.

Изучением полимолекулярной адсорбции на неоднородных поверхностях начал заниматься ещё И. Лэнгмюр. Однако ввиду сложности проблемы исчерпывающего решения её до сих пор не найдено. Учение о полимолекулярной адсорбции развивалось преимущественно с использованием двух под­хо­дов. Один из них основывался на теории Лэнгмюра с отказом от её второго положения. В соответствии с этим активные адсорбционные центры способны принять более чем одну молекулу. Этот подход развивался в работах
Я. Б. Зельдовича, Я. де Бура и др. исследователей. Особое значение имеет теория полимолекулярной адсорбции, предложенная С. Брунауэром, П. Эмметом и Э. Теллером (теория БЭТ). В ней постулируется, что каждая молекула, адсорбированная в первом слое, является адсорбционным центром для молекул, образующих второй слой и т. д. Теория позволила вывести уравнение, описывающее изотерму полимолекулярной адсорбции (уравнение БЭТ):

Полимолекулярную адсорбцию можно рассматривать как конденсацию пара на поверхности адсорбента с образованием тончайшей (толщиной в несколько молекул) поверхностной плёнки, смачивающей поверхность.

При наличии в теле адсорбента глубоких пор и капилляров, имеющих диаметр, соизмеримый с размерами молекул газов, полимолекулярная адсорбция часто происходит по механизму капиллярной конденсации. Она заключается в слиянии таких псевдоожиженных адсорбционных слоёв на стенках пор и капилляров с последующим заполнением пор продолжающим конденсироваться адсорбатом. Вначале заполняются мелкие поры, затем - более крупные. Интересно, что при этом изотермы, полученные при адсорбции с заполнением пор и при десорбции с их опорожнением, имеют различный вид. При наложении их друг на друга получается изотерма с петлей капиллярно-конденсационного гистерезиса(рис. 3.7):

 
  Полимолекулярная адсорбция. Капиллярная конденсация - student2.ru

Рис. 3.7. Капиллярно-конденсационный гистерезис

Изотерма заполнения пор (адсорбция с конденсацией),

Опорожнения пор (десорбция)

Адсорбции с конденсацией соответствует нижняя кривая (1), а десорбции - верхняя (2). Результатом капиллярно-конденсационного гистерезиса является то, что освобождение пор от адсорбата требует создания намного более низкого давления, чем их заполнение. Это связано с образованием внутри пор и капилляров вогнутого мениска жидкости, смачивающей твёрдый адсорбент. Известно, что над вогнутым мениском создается пониженное давление, которое заставляет пору сильно втягивать в себя пары адсорбента.

Наиболее важной в практическом отношении является капиллярная конденсация водяного пара, всегда в том или ином количестве присутствующего в воздухе. Поэтому пористые и порошкообразные адсорбенты, как, например, фармацевтические таблетки и порошки из гидрофильных материалов легко отсыревают и трудно поддаются осушке. Это явление осложняет анализ любых пористых и порошкообразных объектов на содержание адсорбционно-связанной воды, так как требует очень длительного высушивания.

Благодаря капиллярной конденсации влага долгое время сохраняется в почвах, что обеспечивает жизнедеятельность растений, микроорганизмов и мелких животных, обитающих под землёй.

Это же явление служит одной из главных причин выветривания горных пород.

Наши рекомендации