Специфичность действия протеаз
Белковое питание.
АК содержат 95% всего азота, и они поддерживают азотистый баланс организма. Азотистый баланс - разница между количеством азота, поступающего с пищей, и количеством выделяемого азота. Если количество поступающего азота равно количеству выделяемого, то наступает азотистое равновесие. Азотистый баланс может быть положительным (азота поступает больше, чем выводится) у детей. Отрицательный азотистый баланс (выделение азота преобладает над его поступлением) наблюдают при старении, голодании и во время тяжёлых заболеваний. Минимальное количество белков в пище, необходимое для поддержания азотистого равновесия, соответствует 30-50 г/cyt, оптимальное же количество при средней физической нагрузке составляет ∼100-120 г/сут.
незаменимые Ак должны поступать в организм с пищей- фенилаланин, метио-нин, треонин, триптофан, валин, лизин, лейцин, изолейцин.
Две АК - аргинин и гистидин называют частично заменимыми. - тирозин и цистеин - условно заменимые, так как для их синтеза необходимы незаменимые аминокислоты. Тирозин синтезируется из фенилаланина, а для образования цистеина необходим атом серы метионина.
Остальные аминокислоты легко синтезируются в клетках и называются заменимыми. К ним относят глицин, аспарагиновую кислоту, аспарагин, глутаминовую кислоту, глутамин, серии, пролин, аланин.
Физиологический белковый минимум- минимальное количество белков в пище необходимое для поддержания азотистого равновесия- 30-50 г/сут.
В пищевых продуктах содержание свободных аминокислот очень мало. Подавляющее их количество входит в состав белков, которые гидролизуются в ЖКТ под действием ферментов протеаз и белки пищи распадаются на отдельные аминокислоты, которые затем поступают в клетки тканей.
Переваривание белков начинается в желудке, продолжается в двенадцатиперст-ной кишке и тонком кишечнике. Распад белков и аминокислот может происходить также в толстом кишечнике под влиянием микрофлоры.
К гормональным регуляторам желудка относятся гастрин и гистамин
Гастрин выделяется специфичнымиG-клетками:
• в ответ на раздражение механорецепторов;
• в ответ на раздражение хеморецепторов
• под влияниемn.vagus, бомбезина.
Он стимулирует главные, обкладочные и добавочные клетки, что вызывает сек-рецию желудочного сока, также усиливает секрецию гистамина.
Гистамин, взаимодействуя с Н2-рецепторами на обкладочных клетках желудка, увеличивает в них синтез и выделение соляной кислоты.
Закисление желудочного содержимого подавляет активностьG-клеток и по ме-ханизму обратной отрицательной связи снижает секрецию желудочного сока.
Соляная кислота
Одним из компонентов желудочного сока является соляная кислота, вызываю-щая
• превращение неактивного пепсиногена в активный пепсин
• снижение рН желудочного содержимого до1,5-2,5.
• создание оптимума рН для работы пепсина
• денатурацию белков пищи
• бактерицидный эффект
В образовании соляной кислоты принимают участие обкладочные клетки желудка, образующие ионы Н+ и переносящие ионы Сl–из крови в полость желудка. Источником Н+ является Н2СО3, которая образуется в обкладочных клетках желудка из СО2, диффундирующего из крови, и Н2О под действием фермента карбоангидразы
Диссоциация Н2СО3 приводит к образованию бикарбоната, который с участием специальных белков выделяется в плазму. Ионы С1- поступают в просвет желудка через хлоридный канал.
рН снижается до 1,0-2,0.
(химус) в процессе переваривания поступает в двенадцатиперстную кишку. Низкое значение рН химуса вызывает в кишечнике выделение в кровь белкового гормона секретина- стимулирует выделение из поджелудочной железы в тонкий кишечник панкреатического сока, содержащего НСО3-, что приводит к нейтрализации НСl желудочного сока и ингибированию пепсина. В результате рН резко возрастает от 1,5-2,0 до ∼7,0.
Поступление пептидов в тонкий кишечник вызывает секрецию холецистокинина, который стимулирует выделение панкреатических ферментов с оптимумом рН 7,5-8,0. Под действием ферментов поджелудочной железы и клеток кишечника завершается переваривание белков.
1. Активация панкреатических ферментов
В поджелудочной железе синтезируются проферменты ряда протеаз: трипсиноген, химотрипсиноген, проэластаза, прокарбоксипептидазы А и В. В кишечнике они путём частичного протеолиза превращаются в активные ферменты трипсин, химотрипсин, эластазу и карбок-сипептидазы А и В.
Активация трипсиногена происходит под действием фермента энтеропептидазы.
Образовавшийся трипсин активирует химотрипсиноген, из которого получается несколько активных ферментов.
КЛАССИФИКАЦИЯ ВИТАМИНОВ
По химическому строению и физико-химическим свойствам (в частности, по растворимости) витамины делят на 2 группы.
А. Водорастворимые
- Витамин В1 (тиамин);
- Витамин В2 (рибофлавин);
- Витамин РР (никотиновая кислота, никотинамид, витамин В3);
- Пантотеновая кислота (витамин В5);
- Витамин В6 (пиридоксин);
- Биотин (витамин Н);
- Фолиевая кислота (витамин Вс, В9);
- Витамин В12 (кобаламин);
- Витамин С (аскорбиновая кислота);
- Витамин Р (биофлавоноиды).
Б. Жирорастворимые
- Витамин А (ретинол);
- Витамин D (холекальциферол);
- Витамин Е (токоферол);
- Витамин К (филлохинон).
Водорастворимыевитамины при их избыточном поступлении в организм, будучи хорошо растворимыми в воде, быстро выводятся из организма.
Жирорастворимыевитамины хорошо растворимы в жирах и легко накапливаются в организме при их избыточном поступлении с пищей. Их накопление в организме может вызвать расстройство обиена веществ, называемое гипервитаминозом, и даже гибель организма.
Минеральные вещества пищи
В состав организма входит большое кол-во минеральных элементов. Они являются жизненно важными компонентами пищи человека. Минерал. эл. Участвуют в пластических процессах и построении тканей организма, особенно костной тк, где фосфор и кальций явл основными структурными компонентами; в поддержании кислотно-щелочного равновесия в организме. Минеральные элементы пищевых продуктов делятся на вещества щелочного и кислотного действия. К минерал эл. Щелочного д-я относятся кальций, магний, натрий и калий. Этими элементами богаты молоко и молочные продукты, овощи, фрукты, картофель. К минер эл кислотного д-я относятся: фосфор, сера и хлор. Эти элементы в значит кол-ве представлены в продуктах животного происхождения, а также в зерновых продуктах.
Роль кальция. Основное его физиологическое значение- пластическое. Кальций служит основным структурным компонентом в формировании опорных тканей и оссификации костей. Кальций необходим для нормальной возбудимости НС и сократимости мышц. Кальций служит активатором ряда ферментов. Потребность взрослого чел в кальции 800мг в сутки.
Роль фосфора. Фосфор участвует в образовании костей. Велика роль и в энергетическом обеспечении процессов жизнедеятельности. Энергия, освобождаемая в процессе гликолиза и окислительного фосфорилировании м б использована для механической(мышечное сокращение), электрической(проведение нервного импульса),химической(биосинтез различных соединений) и электрохимической (активный транспорт в-в ч/з биологич мембраны) работы. Суточная потребность взрослого чел составляет 1200мг.
Микроэл явл экзогенными хим факторами, играющими значительную роль в таких жизненно важных процессах, как рост, размножение, кроветворение, клеточное дыхание, обмен в-в и др. Входя в состав ферментов, гормонов, и витаминов, м/ты выполняют роль катализаторов биохимических процессов. В случае аномального содержания или нарушенного соотношения м/ов в окружающей среде в организме человека могут развиться нарушения с характерными клиническими симптомами. Йод относится к м/там, имеющим жизненно важное значение. Биологическое значение йода связано с развитием эндемического зоба. Йодная недостат приводит к возник-ю эндемич.зоба. Исп-е йодированной соли в пище снижает заболев-сть населения эндемическим зобом. Йод необходим для нормального функционирования щитовидной железы. Кобальт широко распространен в природе. Он относится к группе биотиков. Наибольш кол-во кобальта найдены в бобовых и зерновых культур, овощах, в продуктах жив происх - говядине, свинине. Кобальт улучшает всас-е железа в кишечнике, явл составной частью вит В12,способствует депонированию в тканях никотинов к-ты, вит А. Цинк относится к м/там. Недостаточности цинка проявляется в задержке роста и полового развития(синдром карликовости и гипогонадизма), гепатоспленомегалии и анемии.. Основным источником поступления микроэлементов в организм человека являются пищевые продукты.
БИОЛОГИЧЕСКИЕ МЕМБРАНЫ. Липидный состав мембран
Все клетки имеют мембраны. Кроме того, почти во всех эукариотических клетках существуют органеллы, каждая из которых имеет свою мембрану. Мембраны ответственны за выполнение многих важнейших функций клетки. Согласованное функционирование мембранных систем - рецепторов, ферментов, транспортных механизмов помогает поддерживать гомеостаз клетки и в то же время быстро реагировать на изменения внешней среды.
К основным функциям мембран можно отнести:
- отделение клетки от окружающей среды и формирование внутриклеточных компартментов(отсеков);
- контроль и регулирование транспорта огромного разнообразия веществ через мембраны;
- участие в обеспечении межклеточных взаимодействий, передаче внутрь клетки сигналов;
- преобразование энергии пищевых органических веществ в энергию химических связей молекул АТФ.
Основу мембраны составляет двойной липидный слой,в формировании которого участвуют фосфолштиды и гликолипиды. Липидный бислой образован двумя рядами липидов, гидрофобные радикалы которых спрятаны внутрь, а гидрофильные группы обращены наружу и контактируют с водной средой. Белковые молекулы как бы "растворены" в липидном бислое
Фосфолипиды.Все фосфолипиды можно разделить на 2 группы - глицерофосфолипиды и сфингофосфолипиды. Глицерофосфолипиды относят к производным фосфатидной кислоты. Наиболее распространённые глицерофосфолипиды мембран - фосфатидилхолины и фосфатидилэтаноламины
Гликолипиды.В гликолипидах гидрофобная часть представлена церамидом. Гидрофильная группа - углеводный остаток, присоединённый гликозидной связью к гидроксильной группе у первого углеродного атома церамида. В зависимости от длины и строения углеводной части различают цереброзиды,содержащие моно- или олигосахаридный остаток, и ганглиозиды,к ОН-группе которых присоединён сложный, разветвлённый олигосахарид, содержащий N-ацетилнейраминовую кислоту
Полярные "головки" гликосфинголипидов находятся на наружной поверхности плазматических мембран. В значительных количествах гликолипиды содержатся в мембранах клеток мозга, эритроцитов, эпителиальных клеток.
Холестерол.Холестерол присутствует во всех мембранах животных клеток. Его молекула состоит из жёсткого гидрофобного ядра и гибкой углеводородной цепи, единственная гидроксильная группа является "полярной головкой".
Жидкостностъ мембран
Для мембран характерна жидкостность (текучесть), способность липидов и белков к латеральной диффузии. Скорость перемещения молекул зависит от микровязкости мембран, которая определяется относительным содержанием насыщенных и ненасыщенных жирных кислот в составе липидов. Микровязкость меньше, если в составе липидов преобладают ненасыщенные жирные кислоты, и больше при высоком содержании насыщенных жирных кислот.
Кроме того, некоторые липиды выполняют "якорную" функцию - ацетилхолинэстераза, катализирующая гидролиз ацетилхолина в синаптической щели. Этот фермент фиксируется на поСтеинаптической мембране, ковалентно присоединяясь к фосфатидилино-зитолгликану. Под действием фосфолипазы С может происходить отделение белков от внешней поверхности клетки.
Механизмы переноса веществ.
простая диффузия, при которой перемещение веществ происходит вследствие разницы их концентрации по обе стороны цитоплазматической мембраны. Вещества проходят через липид-ную часть цитоплазматической мембраны и реже по заполненным водой каналам в цитоплазматической мембране. Пассивная диффузия осуществляется без затраты энергии.
В мембранах клеток существуют белки-транслоказы переносящие только одно растворимое в воде вещество с одной стороны мембраны на другую. Такой простой транспорт называют "пассивный унипорт".Примером унипорта может служить функционирование ГЛЮТ-1 - транслоказы, переносящей глюкозу через мембрану эритроцита. Некоторые транслоказы могут переносить два разных вещества по градиенту концентраций в одном направлении - пассивный симпорт,или в противоположных направлениях - пассивный антипорт. Примером транслоказы, работающей по механизму пассивного антипорта, может служить анионный переносчик мембраны эритроцитов.
Перенос некоторых лигандов (ионов, глюкозы, аминокислот) через мембраны происходит против градиента концентрации и сопряжён с затратой энергии (активный транспорт).Перенос лигандов через мембрану, связанный с затратой энергии АТФ, называют "первично-активный транспорт"-с помощью специальных переносчиков, вторично активный – когда одно вещество (чаще всего натрий) переносится по градиенту концентрации и при этом создаётся энергия, достаточная для переноса другого вещества
По локализации различают мембранные, цитоплазматические и ядерные рецепторы. По другой классификации все рецепторы можно разделить на быстроотвечающие и медленноотвечающие, в пределах нескольких минут или даже часов, что характерно для гормонов, передающих сигнал на внутриклеточные рецепторы. Рецепторы первого типа - интегральные олигомерные белки, содержащие субъединицу, имеющую центр для связывания сигнальной молекулы и центральный ионный канал
Рецепторы второго типа, локализованные в мембранах и не связанные с каналами, подразделяют на 2 большие группы: каталитические рецепторы,обладающие собственной тирозин-киназной или гуанилатциклазной активностью, и рецепторы,взаимодействующие через G-белок с мембранным ферментом. Связывание ли-ганда (например, гормона) с рецептором на наружной стороне клеточной мембраны приводит к изменению активности цитоплазматического фермента, который, в свою очередь, инициирует клеточный ответ, т.е. через мембрану переносится информация, а не заряды или какие-либо растворённые молекулы.
В случае цитоплазматических рецепторов через мембрану проходит гормон, а информация о присутствии гормона в клетке с помощью рецептора передаётся в ядро.
Различные клетки организма в зависимости от выполняемых ими функций имеют определённый набор рецепторов. В мембране одной клетки может быть более десятка разных типов рецепторов. Взаимодействуя с рецептором, внеклеточные химические посредники оказывают влияние на метаболизм и функциональное состояние (пролиферация, секреция и т.д.) клеток-мишеней.
Образование активных форм кислорода
В ЦПЭ поглощается около 90% поступающего в клетки О2. Остальная часть О2 используется в других окислительно-восстановительных реакциях. Ферменты, участвующие в окислительно-восстановительных реакциях с использованием Кислорода, делятся на 2 группы: оксидазы и оксигеназы. Оксидазы используют молекулярный кислород только в качестве акцептора электронов, восстанавливая его до Н2О или Н2О2.
Оксигеназы включают один (монооксигеназы) или два (диоксигеназы) атома кислорода в образующийся продукт реакции.
Хотя эти реакции не сопровождаются синтезом АТФ, они необходимы для многих специфических реакций в обмене аминокислот , синтезе жёлчных кислот и стероидов, в реакциях обезвреживания чужеродных веществ в печени. В большинстве реакций с участием молекулярного кислорода его восстановление происходит поэтапно с переносом одного электрона на каждом этапе. При одноэлектронном переносе происходит образование промежуточных высокореактивных форм кислорода. В невозбуждённом состоянии кислород нетоксичен. Образование токсических форм кислорода связано с особенностями его молекулярной структуры. О2 содержит 2 неспаренных электрона с параллельными спинами, которые не могут образовывать термодинамически стабильную пару и располагаются на разных орбиталях. Каждая из этих орбиталей может принять ещё один электрон.
Полное восстановление О2 происходит в результате 4 одноэлектронных переходов:
Супероксид, пероксид и гидроксильный радикал - активные окислители, что представляет серьёзную опасность для многих структурных компонентов клетки (рис. 6-30).
Активные формы кислорода могут отщеплять электроны от многих соединений, превращая их в новые свободные радикалы, инициируя цепные окислительные реакции.
Повреждающее действие свободных радикалов на компоненты клетки. 1 - разрушение белков; 2 - повреждение ЭР; 3 - разрушение ядерной мембраны и повреждение ДНК; 4 - разрушение мембран митохондрий; 5 - ПОЛ клеточной мембраны; 6, 7, 8 - проникновение в клетку воды и ионов.
Супероксид, пероксид и гидроксильный радикал - активные окислители, что представляет серьёзную опасность для многих компонентов клетки. Активные формы кислорода могут отщеплять электроны от многих соединений, превращая их в новые свободные радикалы, инициируя цепные окислительные реакции.
Большая часть активных форм кислорода образуется при переносе электронов в ЦПЭ, прежде всего, при функционировании QH2-дегидрогеназного комплекса. Это происходит в результате неферментативного переноса ("утечки") электронов с QH2 на кислород. на этапе переноса электронов при участии цитохромоксидазы (комплекс IV) "утечка" электронов не происходит благодаря наличию в ферменте специальных активных центров, содержащих Fe и Сu и восстанавливающих О2 без освобождения промежуточных свободных радикалов. В фагоцитирующих лейкоцитах в процессе фагоцитоза усиливаются поглощение кислорода и образование активных радикалов. Активные формы кислорода образуются в результате активации NADPH-оксидазы, преимущественно локализованной на наружной стороне плазматической мембраны, инициируя так называемый "респираторный взрыв" с образованием активных форм кислорода. Защита организма от токсического действия активных форм кислорода связана с наличием во всех клетках высокоспецифичных ферментов: супероксиддисмутазы, каталазы, глутатион-пероксидазы, а также с действием антиоксидантов.
Белковое питание.
АК содержат 95% всего азота, и они поддерживают азотистый баланс организма. Азотистый баланс - разница между количеством азота, поступающего с пищей, и количеством выделяемого азота. Если количество поступающего азота равно количеству выделяемого, то наступает азотистое равновесие. Азотистый баланс может быть положительным (азота поступает больше, чем выводится) у детей. Отрицательный азотистый баланс (выделение азота преобладает над его поступлением) наблюдают при старении, голодании и во время тяжёлых заболеваний. Минимальное количество белков в пище, необходимое для поддержания азотистого равновесия, соответствует 30-50 г/cyt, оптимальное же количество при средней физической нагрузке составляет ∼100-120 г/сут.
незаменимые Ак должны поступать в организм с пищей- фенилаланин, метио-нин, треонин, триптофан, валин, лизин, лейцин, изолейцин.
Две АК - аргинин и гистидин называют частично заменимыми. - тирозин и цистеин - условно заменимые, так как для их синтеза необходимы незаменимые аминокислоты. Тирозин синтезируется из фенилаланина, а для образования цистеина необходим атом серы метионина.
Остальные аминокислоты легко синтезируются в клетках и называются заменимыми. К ним относят глицин, аспарагиновую кислоту, аспарагин, глутаминовую кислоту, глутамин, серии, пролин, аланин.
Физиологический белковый минимум- минимальное количество белков в пище необходимое для поддержания азотистого равновесия- 30-50 г/сут.
В пищевых продуктах содержание свободных аминокислот очень мало. Подавляющее их количество входит в состав белков, которые гидролизуются в ЖКТ под действием ферментов протеаз и белки пищи распадаются на отдельные аминокислоты, которые затем поступают в клетки тканей.
Переваривание белков начинается в желудке, продолжается в двенадцатиперст-ной кишке и тонком кишечнике. Распад белков и аминокислот может происходить также в толстом кишечнике под влиянием микрофлоры.
К гормональным регуляторам желудка относятся гастрин и гистамин
Гастрин выделяется специфичнымиG-клетками:
• в ответ на раздражение механорецепторов;
• в ответ на раздражение хеморецепторов
• под влияниемn.vagus, бомбезина.
Он стимулирует главные, обкладочные и добавочные клетки, что вызывает сек-рецию желудочного сока, также усиливает секрецию гистамина.
Гистамин, взаимодействуя с Н2-рецепторами на обкладочных клетках желудка, увеличивает в них синтез и выделение соляной кислоты.
Закисление желудочного содержимого подавляет активностьG-клеток и по ме-ханизму обратной отрицательной связи снижает секрецию желудочного сока.
Соляная кислота
Одним из компонентов желудочного сока является соляная кислота, вызываю-щая
• превращение неактивного пепсиногена в активный пепсин
• снижение рН желудочного содержимого до1,5-2,5.
• создание оптимума рН для работы пепсина
• денатурацию белков пищи
• бактерицидный эффект
В образовании соляной кислоты принимают участие обкладочные клетки желудка, образующие ионы Н+ и переносящие ионы Сl–из крови в полость желудка. Источником Н+ является Н2СО3, которая образуется в обкладочных клетках желудка из СО2, диффундирующего из крови, и Н2О под действием фермента карбоангидразы
Диссоциация Н2СО3 приводит к образованию бикарбоната, который с участием специальных белков выделяется в плазму. Ионы С1- поступают в просвет желудка через хлоридный канал.
рН снижается до 1,0-2,0.
(химус) в процессе переваривания поступает в двенадцатиперстную кишку. Низкое значение рН химуса вызывает в кишечнике выделение в кровь белкового гормона секретина- стимулирует выделение из поджелудочной железы в тонкий кишечник панкреатического сока, содержащего НСО3-, что приводит к нейтрализации НСl желудочного сока и ингибированию пепсина. В результате рН резко возрастает от 1,5-2,0 до ∼7,0.
Поступление пептидов в тонкий кишечник вызывает секрецию холецистокинина, который стимулирует выделение панкреатических ферментов с оптимумом рН 7,5-8,0. Под действием ферментов поджелудочной железы и клеток кишечника завершается переваривание белков.
1. Активация панкреатических ферментов
В поджелудочной железе синтезируются проферменты ряда протеаз: трипсиноген, химотрипсиноген, проэластаза, прокарбоксипептидазы А и В. В кишечнике они путём частичного протеолиза превращаются в активные ферменты трипсин, химотрипсин, эластазу и карбок-сипептидазы А и В.
Активация трипсиногена происходит под действием фермента энтеропептидазы.
Образовавшийся трипсин активирует химотрипсиноген, из которого получается несколько активных ферментов.
Специфичность действия протеаз
Трипсин преимущественно гидролизует пептидные связи, образованные карбоксильными группами аргинина и лизина. Химотрипсины наиболее активны в отношении пептидных связей, образованных карбоксильными группами ароматических аминокислот (Фен, Тир, Три).
Карбоксипептидазы А и В - цинксодержащие ферменты, отщепляют С-концевые остатки аминокислот. Причём карбоксипептидаза А отщепляет преимущественно аминокислоты, содержащие ароматические или гидрофобные радикалы, а карбоксипептидаза В - остатки аргинина и лизина.
Последний этап переваривания - гидролиз небольших пептидов, происходит под действием ферментов аминопептидаз и дипептидаз, которые синтезируются клетками тонкого кишечника в активной форме.
Аминопептидазы последовательно отщепляют N-концевые аминокислоты пептидной цепи. Дипептидазы расщепляют дипептиды на АК.
В результате последовательного действия всех пищеварительных протеаз большинство пищевых белков расщепляется до свободных ак.
В. Защита клеток от действия протеаз
Клетки поджелудочной железы защищены от действия пищеварительных ферментов т.к:
эти ферменты образуются в виде неактивных предшественников в клетках поджелудочной железы и активируются только после секреции в просвет кишечника.
в клетках поджелудочной железы присутствует белок-ингибитор трипсина, образующий с активной формой фермента (в случае преждевременной активации) прочный комплекс.
В полости желудка и кишечника протеазы не контактируют с белками клеток, поскольку слизистая оболочка покрыта слоем слизи, а каждая клетка содержит на наружной поверхности плазматической мембраны полисахариды, которые не расщепляются протеазами и тем самым защищают клетку от их действия.
Разрушение клеточных белков протеазами происходит при язвенной болезни желудка или двенадцатиперстной кишки.
Всасывание Аминокислоты, образовавшиеся при переваривании белков, быстро всасываются в кишечнике. Максимальная концентрация аминокислот в крови достигается через 30-50 мин после приёма белковой пищи.
L-аминокислота поступает в энтероцит путём симпорта с ионом Na+. Далее специфическая транслоказа переносит аминокислоту через мембрану в кровь. Обмен ионов натрия между клетками осуществляется путём первично-активного транспорта с помощью Nа+,К+-АТФ-азы.
Перенос через щёточную кайму осуществляется целым рядом переносчиков,
известно по крайней мере пять специфических транспортных систем:
нейтральных, с короткой боковой цепью (аланин, серии, треонин);
нейтральных, с длинной или разветвлённой боковой цепью (валин, лейцин, изолейцин);
с катионными радикалами (лизин, аргинин);
с анионными радикалами (глутаминовая и аспарагиновая кислоты);
иминокислот (пролин, оксипролин).
Аминокислоты конкурируют друг с другом за специфические участки связывания.
Одна из специфических транспортных систем функционирует в кишечнике, почках и, мозге. Она получила название γ-глутамильного цикла
Система состоит из одного мембранного и пяти цитоплазматических ферментов. Перенос аминокислоты внутрь клетки осуществляется в комплексе с глутамильным остатком глутатиона под действием γ-глутамилтрансферазы. Затем аминокислота освобождается, а γ-глутамильный остаток в несколько стадий превращается в глутатион, который способен присоединять следующую молекулу аминокислоты.
Аминокислота, связанная с γ-глутамильным остатком, оказывается внутри клетки. В следующей реакции происходит отщепление γ-глутамильного остатка под действием фермента γ-глутамилциклотрансферазы. Для транспорта в клетку одной молекулы аминокислоты с участием γ-глутамильного цикла затрачиваются 3 молекулы АТФ.
У новорождённых проницаемость слизистой оболочки кишечника выше, чем у взрослых, поэтому в кровь могут поступать антитела молозива (секрет молочных желёз, выделяющийся в первые дни после родов, обогащённый антителами и антитоксинами). Это усугубляется наличием в молозиве белка - ингибитора трипсина. Протеолитические ферменты в пищеварительных секретах новорождённых обладают низкой активностью. Всё это способствует всасыванию в кишечнике небольшого количества нативных белков
Целиакия характеризуется повышенной чувствительностью к глютену - белку клейковины зёрен злаков. Этот белок оказывает токсическое действие на слизистую оболочку тонкой кишки, что приводит к её патологическим изменениям и нарушению всасывания.
Такие заболевания, как цистинурия,болезнь Хартнапаи некоторые другие, возникают вследствие дефекта переносчиков нейтральных аминокислот в кишечнике и почках.
Витамины - низкомолекулярные органические соединения различной химической природы и различного строения, синтезируемые главным образом растениями, частично - микроорганизмами. Для человека витамины - незаменимые пищевые факторы.
Недостаток поступления витаминов с пищей, нарушение их всасывания или нарушение их использования организмом приводит к развитию патологических состояний, называемых гиповитаминозами.