Физико-химические свойства белков как основа методов их исследования.
Белки – высокомолекулярные, азотосодержащие органические вещества, состоящие из аминокислот, соединённых в цепи с помощью пептидных связей, имеющих сложную структурную организацию.
Признаки белков: содержит азот; альфа-аминокислоты L-ряда; формируют полипептидную цепь; высокая молекулярная масса (от 6 тысяч до нескольких млн. дальтон); сложная структурная организация.
Первичная структура белков в значительной степени определяет вторичную, третичную структуры и особенности четвертичной структуры. В свою очередь, первичная и пространственная структуры белков, их молекулярная масса, форма и размеры обусловливают их физико-химические свойства.
Белки способны связываться с лигандами. Белки специфично узнают свои лиганды, что обусловлено комплементарным строением определенного участка белка и лиганда. Избирательность обеспечивается белковой частью гемоглобина. Центр связывания лиганда называется активным центром.
Белки имеют различную форму, но выделяют две основных группы: глобулярные (шарообразные) и фибриллярные (веретенообразные). Глобулярные белки более компактны, в этих белках гидрофильные группы расположены преимущественно снаружи, а гидрофобные – внутри, образуя ядро.
Различия в первичной структуре белков, их конфигурации, молекулярной массе, размерах определяют разнообразные свойства белков. Можно выделить несколько групп физико-химических свойств:
1.) Электрохимические свойства белков.
Белки — амфотерные полиэлектролиты, т. е. подобно аминокислотам они обладают кислотными и основными свойствами. Эти свойства белка обусловлены электрохимической природой R-радикалов аминокислот, входящих в состав белка. Поскольку большая часть ионогенных и полярных R-групп находится на поверхности белковой глобулы, то именно они определяют кислотно-основные (амфотерные) свойства и заряд белковой молекулы. Кислые свойства белку придают аспарагиновая и глутаминовая аминокислоты, диссоциация их карбоксильных групп является источником отрицательных электрических зарядов на поверхности белковой молекулы. Основные свойства белку придают лизин, аргинин, гистидин, способные к протонированию и к созданию на поверхности белковой молекулы положительных зарядов. В амфотерную природу белковой молекулы вносят вклад (хотя и несущественный) ее N- и С-концевые аминокислоты. Слабая диссоциация SН-групп цистеина и ОН-групп тирозина весьма несущественно влияет на амфотерность белков. В целом, чем больше кислых аминокислот содержится в белке, тем сильнее выражены его кислотные свойства, тем выше суммарная плотность отрицательного заряда, и чем больше основных аминокислот, тем ярче проявляются основные свойства белка и выше плотность положительных зарядов на его молекуле. Однако следует отметить, что значения рК радикалов аминокислот колеблются в довольно широких пределах.
Амфотерная природа белков обусловливает определенную буферность их растворов. Однако при физиологических значениях рН она невелика. Исключение составляют белки, содержащие большое количество гистидина, так как только боковые имидазольные группы гистидина обладают буферными свойствами в интервале значений рН, близких к физиологическим. Таких белков мало; к ним относится, например, гемоглобин животных, содержащий 8% гистидина, обусловливающего высокую внутриклеточную буферность в эритроцитах, поддерживая рН крови на постоянном уровне.
Суммарный заряд белковой молекулы определяется соотношением в ней кислотных и основных радикалов аминокислот и величиной их рК. Если в белке кислые аминокислоты преобладают над основными, то в целом молекула белка электроотрицательна, т. е. находится в форме полианиона; и наоборот, если преобладают основные аминокислоты — в форме поликатиона.
Амфотерный характер белков особенно ярко проявляется при изменении рН белкового раствора. В кислой среде в результате высокой концентрации Н+-ионов идет подавление кислотной диссоциации карбоксильных групп и интенсивное протонирование NH-2, —NH—, имидазольных групп — суммарный заряд белковой молекулы будет положителен; в щелочной среде при избытке ОH-ионов будет наблюдаться обратная картина: интенсивная диссоциация карбоксильных групп и депротонирование основных групп — суммарный заряд отрицателен. Естественно, что каждый белок при каком-то определенном значении рН будет иметь суммарный электрический заряд, равный нулю; такое состояние белка называется изоэлектрическим состоянием, а величина рН, обусловливающая это состояние, называется изоэлектрической точкой (ИЭТ). В этой точке белок не обладает подвижностью в электрическом поле; имеет наименьшую растворимость в воде; белковые растворы обладают минимальной устойчивостью и минимальным осмотическим давлением. ИЭТ каждого белка определяется соотношением кислых и основных групп, величиной их рК: чем больше это соотношение и ниже величина рК групп, тем ниже ИЭТ белка. У кислых белков ИЭТ < 7, у нейтральных около 7, а у основных > 7; при рН < ИЭТ белок будет находиться в форме поликатиона, при рН > ИЭТ — в форме полианиона, в ИЭТ — в форме амфотерного полииона (цвиттер-полииона). ИЭТ большинства белков клеток животных, растений, микроорганизмов лежит в пределах 5,5—6,0, а внутриклеточная величина рН находится в пределах 7,0—7,2 (физиологическое значение рН). Следовательно, клеточные белки имеют в общем отрицательный заряд, который уравновешивается неорганическими катионами.
2.) Коллоидные свойства белков.
Водные растворы белков — это устойчивые системы, по этому свойству их можно отнести к истинным молекулярным растворам. Однако высокая молекулярная масса белков придает им коллоидный характер.
Биологические мембраны живых клеток также непроницаемы для белков. Поэтому содержащиеся в протоплазменных структурах этих клеток белки создают в них определенное осмотическое давление, называемое коллоидно-осмотическое или онкотическое давление.
Малой скоростью диффузии обладают белки и в водных растворах, она зависит не только от молекулярной массы, но и от формы белковой молекулы. Глобулярные белки в водных растворах имеют более высокий коэффициент диффузии, чем фибриллярные.
Характерными признаками коллоидного характера белковых растворов являются их опалесценция, блеск и способность рассеивать лучи света (эффект Тиндаля). Если через кювету с раствором низкомолекулярного вещества, например NaС1, пропустить пучок света, то в кювете он не будет обнаружен, раствор является «оптически пустым». Иная картина будет наблюдаться в кювете с раствором белка, при боковом освещении в ней появляется светящаяся полоса или конус. При прохождении света через раствор, содержащий белковые глобулы, радиус которых намного превышает длину волны света, будет наблюдаться дифракция света: падая на белковую глобулу, свет будет отражаться в различных направлениях.
3.) Гидратация белков.
Гидратация белков - способность белков связывать воду. 100 г. белка связывает 30-35 г. воды. Вода связывается ионогенными группами и пептидными группами, расположенными в основном, внутри молекулы белка. Проникновение воды внутрь молекулы белка называется набуханием. Связывание воды ионогенными группами, расположенными на поверхности белковой молекулы, приводит к образованию гидратной оболочки. Количество связанной воды для различных белков составляет около 35 г на 100 г белка. Связанная вода в гидратной оболочке находится в упорядоченном состоянии, что приводит к уменьшению энтропии при гидратации.
4.) Растворимость белков в воде.
Многие белки хорошо растворимы в воде, что определяется количеством полярных групп. Растворимость глобулярных молекул лучше, чем фибриллярных белков. Факторы, определяющие стабильность белковых растворов:
- наличие зарядов в белковой молекуле. Одноименные заряды способствуют растворимости белка, т.к. препятствуют соединению молекул и выпадению в осадок.
- наличие гидратной оболочки, препятствующей объединению белковых молекул. Для осаждения белка, его необходимо лишить этих двух факторов устойчивости. Методом осаждения белка является вливание - осаждение белка с помощью нейтральных солей - (NH4)2-S04. В полунасыщенном растворе (NH4)2-SO4 осаждаются глобулины, а в насыщенном - альбумины. После удаления осаждающего фактора, белки переходят в растворённое состояние.
5.) Лабильность пространственной структуры белка.
Под действием внешних факторов может происходить нарушение высших уровней организации белковой молекулы (вторичной, третичной, четвертичной структур) при сохранении первичной структуры. При этом белок теряет свои нативные, физико-химические и биологические свойства. Это явление называется денатурацией. Денатурацию вызывают физические факторы (повышение температуры, давления, механическое воздействие, УЗ, ионизирующее излучение), химические факторы (кислоты, щелочи, органические растворители - спирт, фенол; соли тяжёлых металлов). В некоторых случаях возможна ренатурация, когда денатурирующий фактор действовал кратковременно и нанёс лёгкое разрушение молекуле. В последние годы установлено, что в организме есть белки предотвращающие денатурацию.