Константность восприятия. кой диспаратности возрастает с увеличением различия в удаленности предметов от
кой диспаратности возрастает с увеличением различия в удаленности предметов от глаз, и это служит для мозга источником информации о глубине и расположении их в поле зрения. В коре мозга животных обнаружены отдельные нейроны, которые в наибольшей степени активируются определенными величинами диспаратности. Оптимальными стимулами для них служат края, находящиеся впереди или позади фронтальной поверхности.
Эффект контраста (изменение цвета, окруженного кольцом другого цвета) можно объяснить возбуждением ганглиозных клеток сетчатки с простыми рецептивными полями типа “on-off”. Порог реакции этих ганглиозных клеток определяется не абсолютной освещенностью, а скорее ее отношением к освещенности окружающего фона или к среднему уровню освещенности.
И.Н. Пигарев и Е.Н. Родионова (1985) обнаружили константные нейроны*-детекторы. Они реагировали не только на зрительные сигналы, но и на положение глаз в орбитах. Это позволяет объяснить явление константности восприятия, поскольку можно предположить, что в течение жизни человека происходит формирование нейронов, активность которых приводит к сохранению постоянства изображения, несмотря на изменение положения глаз в орбитах.
Зрительные сигналы, поступающие в зрительную кору, расходятся, образуя дорзальный и вентральный потоки обработки информации. Вентральная подсистема, включающая нижневисочную кору, различает сложные зрительные образы, поэтому ее называют системой “что”. Дорзальный поток, включающий теменную кору, обрабатывает пространственную информацию и называется системой “где”. В системе “что” константность выражается в том, что предметные свойства абстрагируются от конкретных условий восприятия. Например, константность восприятия цвета создается следующим образом. Поверхность предмета характеризуется специфическим спектром поглощения, поэтому отражаемый ею световой поток зависит от условий освещения. Однако, несмотря на изменение условий освещения, мы воспринимаем цвет поверхности неизменным. Зрительный анализатор измеряет неизменные свойства отражающей поверхности. Чтобы определить отражающие свойства поверхности, нужно знать спектральную характеристику осветителя и спектр отраженного поверхностью света. Цветовой анализатор имеет константные и аконстантные детекторы цвета. Первые в отличие от вторых реагируют на цвет объекта независимо от условий освещения.
Они образуют соответственно аконстантный и константный экраны отображения цветов. Аконстантные детекторы цвета измеряют раздельно цвет освещения и цвет отраженного светового потока. Сигнал относительно условий освещения смещает проекцию цвета по константному экрану так, что возбужденным остается тот же константный детектор цвета, несмотря на изменение отраженного от предмета светового потока. Таким образом, константный экран цвета кодирует не характеристику отраженного света, а отражающие свойства поверхности. Разным характеристикам отражающей поверхности соответствуют детекторы на разных участках константного экрана. Так, белая поверхность, освещаемая разными источниками освещения, будет возбуждать один и тот же константный детектор белизны. Самосветящиеся объекты, где освещение отсутствует, будут вызывать возбуждения, совпадающие на аконстантном и константном эк-
ранах. При изменении спектра самосветящихся объектов локус возбуждения смещается по аконстантному и константному экранам одинаково в связи с тем, что сигнал относительно условий освещения отсутствует (Соколов, 2000).
В системе “где” константность восприятия связана с характеристиками пространства. При переводе взора с одной точки на другую изображение всей сцены смещается относительно сетчатки, однако мы не замечаем этого сдвига. Зато в случае последовательного образа движение глаз приводит к субъективному перемещению последовательного образа в пространстве. Сигналы, поступающие от системы управления движения глаз, “перемещают” постоянный по своей локализации на сетчатке последовательный образ. В этой системе также есть аконстантные и константные детекторы. Детекторы первичной зрительной коры характеризуются рецептивными полями, “привязанными” к ретинотони-ческой проекции. При смещении линии взора локальный стимул выходит за границы рецептивного поля. Поэтому при изучении рецептивных полей нейронов сетчатки и первично зрительной коры необходимо обездвиживание животного или исключение движения глаз. Детекторы первичной коры, зависящие от положения стимула относительно сетчатки, являются аконстантными детекторами. Нейроны теменной коры “привязаны” не к сетчатке, а к внешнему пространству. При изменении линии взора, когда стимул выходит из рецептивного поля аконстантного нейрона, константный нейрон теменной коры продолжает реагировать. Зато, если стимул перемещается в пространстве при фиксированном положении линии взора, нейрон перестает отвечать.
Следовательно, рецептивное поле константного нейрона представляет собой не локальный участок сетчатки, а локальный участок внешнего пространства. Это становится понятным, если допустить, что на каждом константном детекторе конвергируют все аконстантные детекторы. Эта конвергенция зависит от сигналов относительно линии взора, “подключающей” определенный аконстантный детектор к определенному константному нейрону. При смещении линии взора к константным детекторам подключаются другие аконстантные детекторы. Хотя сцена и смещается по сетчатке, она остается на тех же константных детекторах. Как бы ни перемещался взор, каждый константный детектор продолжает представлять все тот же участок внешнего пространства. В случае последовательного образа, когда возбуждение локуса сетчатки остается неизменным при движении глаз, его проекция относительно константного экрана перемещается. Это происходит потому, что сигнал, поступающий от движений глаз, “перемещает” возбуждение по константному экрану в соответствии с ожидаемым смещением сцены по аконстантному экрану (Соколов, 2000). Объединение информации, находящейся в системах “где” и “что”, происходит при участии оперативной памяти.