Протоколы транспортного уровня
Служба доменных имен DNS
Служба доменных имен (Domain Name Service) выполняет разрешение (определение) имен хостов, в частности, имен Интернета, подобных www.routersim.com
Служба DNS использует для разрешения имен полностью квалифицированные доменные имена FQDN (Fully Qualified Domain Name), например www.lammle.com или todd.lammle.com.
DNS (Domain Name System) - это распределенная база данных, поддерживающая иерархическую систему имен для идентификации узлов в сети Internet. Служба DNS предназначена для автоматического поиска IP-адреса по известному символьному имени узла.
Этот протокол несимметричен - в нем определены DNS-серверы и DNS-клиенты. DNS-серверы хранят часть распределенной базы данных о соответствии символьных имен и IP-адресов. Эта база данных распределена по административным доменам сети Internet. Клиенты сервера DNS знают IP-адрес сервера DNS своего административного домена и по протоколу IP передают запрос, в котором сообщают известное символьное имя и просят вернуть соответствующий ему IP-адрес. Если данные о запрошенном соответствии хранятся в базе данного DNS-сервера, то он сразу посылает ответ клиенту, если же нет - то он посылает запрос DNS-серверу другого домена, который может сам обработать запрос, либо передать его другому DNS-серверу.
Все DNS-серверы соединены иерархически, в соответствии с иерархией доменов сети Internet. Клиент опрашивает эти серверы имен, пока не найдет нужные отображения.
База данных DNS имеет структуру дерева, называемого доменным пространством имен, в котором каждый домен (узел дерева) имеет имя и может содержать поддомены.
Имя домена идентифицирует его положение в этой базе данных по отношению к родительскому домену, причем точки в имени отделяют части, соответствующие узлам домена. Корень базы данных DNS управляется центром Internet Network Information Center (INIC). Домены верхнего уровня назначаются для каждой страны, а также на организационной основе. Имена этих доменов должны следовать международному стандарту ISO 3166.
Каждый домен DNS администрируется отдельной организацией, которая обычно разбивает свой домен на поддомены и передает функции администрирования этих поддоменов другим организациям. Каждый домен имеет уникальное имя, а каждый из поддоменов имеет уникальное имя внутри своего домена. Имя домена может содержать до 63 символов.
Задание 1. Найти и записать домены первого уровня общесетевых (все) и географических (региональных) ресурсов (не менее 10).
Задание 2.Привести примеры доменных имен разного уровня (до 3-го включительно).
Протоколы транспортного уровня
Протоколы транспортного уровня обеспечивают прозрачную (сквозную) доставку данных (end-to-end delivery service) между двумя прикладными процессами. Процесс, получающий или отправляющий данные с помощью транспортного уровня, идентифицируется на этом уровне номером, который называется номером порта(рисунок 46). Таким образом, роль адреса отправителя и получателя на транспортном уровне выполняет номер порта (или проще - порт).
Анализируя заголовок своего пакета, полученного от межсетевого уровня, транспортный модуль определяет по номеру порта получателя, какому из прикладных процессов направлены данные, и передает эти данные соответствующему прикладному процессу (возможно, после проверки их на наличие ошибок и т.п.).
На транспортном уровне работают два основных протокола: UDP и TCP.
TCP (Transmission Control Protocol - протокол контроля передачи) - надежный протокол с установлением соединения: он управляет логическим сеансом связи (устанавливает, поддерживает и закрывает соединение) между процессами и обеспечивает надежную (безошибочную и гарантированную) доставку прикладных данных от процесса к процессу. TCP находится на транспортном уровне стека TCP/IP, между протоколом IP и собственно приложением. Протокол IP занимается пересылкой дейтаграмм по сети, никак не гарантируя доставку, целостность, порядок прибытия информации и готовность получателя к приему данных; все эти задачи возложены на протокол TCP.
Протокол TCP рассматривает данные клиента как непрерывный неинтерпретируемый поток октетов. TCP разделяет этот поток на части для пересылки на другой узел в TCP-сегментах некоторого размера. Для отправки или получения сегмента модуль TCP вызывает модуль IP.
Обеспечение достоверности. Модуль TCP обеспечивает защиту от повреждения, потери, дублирования и нарушения очередности получения данных.
Для выполнения этих задач все октеты в потоке данных сквозным образом пронумерованы в возрастающем порядке. Заголовок каждого сегмента содержит число октетов данных в сегменте и порядковый номер первого октета той части потока данных, которая пересылается в данном сегменте. Например, если в сегменте пересылаются октеты с номерами от 2001 до 3000, то номер первого октета в данном сегменте равен 2001, а число октетов равно 1000.
Также для каждого сегмента вычисляется контрольная сумма, позволяющая обнаружить повреждение данных.
При удачном приеме октета данных принимающий модуль посылает отправителю подтверждение о приеме - номер удачно принятого октета. Если в течение некоторого времени отправитель не получит подтверждения, считается, что октет не дошел или был поврежден, и он посылается снова. Этот механизм контроля надежности называется PAR (Positive Acknowledgment with Retransmission). В действительности подтверждение посылается не для одного октета, а для некоторого числа последовательных октетов.
Нумерация октетов используется также для упорядочения данных в порядке очередности и обнаружения дубликатов (которые могут быть посланы из-за большой задержки при передаче подтверждения или потери подтверждения).
Управление соединениями. Соединение - это совокупность информации о состоянии потока данных, включающая сокеты, номера посланных, принятых и подтвержденных октетов, размеры окон.
Каждое соединение уникально идентифицируется в Интернет парой сокетов. Совокупность IP-адреса и номера порта называется сокетом. Сокет уникально идентифицирует прикладной процесс в Интернет. Например, сокет сервера электронной почты на хосте 194.84.124.4 обозначается как 194.84.124.4.25; часто номер порта отделяется двоеточием.
Различают два типа открытия соединения: активное и пассивное.
При активном открытии TCP-модуль начинает процедуру установления соединения с указанным сокетом, при пассивном - ожидает, что удаленный TCP-модуль начнет процедуру установления соединения с указанного сокета. Указание 0.0.0.0:0 в качестве сокета при пассивном открытии означает, что ожидается соединение с любого сокета. Такой способ применяется в демонах - серверах Интернет, которые ждут установления соединения от клиента. Клиент же применяет процедуру активного открытия; сокет при этом формируется из IP-адреса сервера и стандартного номера порта для данного сервиса.
Закрытие соединения клиентом производится с помощью функции CLOSE, которой передается имя соединения.
Управление потоком. Для ускорения и оптимизации процесса передачи больших объемов данных протокол TCP определяет метод управления потоком, называемый методом скользящего окна, который позволяет отправителю посылать очередной сегмент, не дожидаясь подтверждения о получении в пункте назначения предшествующего сегмента.
Рис. Метод скользящего окна
Протокол TCP формирует подтверждения не для каждого конкретного успешно полученного пакета, а для всех данных от начала посылки до некоторого порядкового номера ACK SN (Acknowledge Sequence Number) исключительно. В качестве подтверждения успешного приема, например, первых 2000 байт, высылается ACK SN = 2001: это означает, что все данные в байтовом потоке под номерами от ISN+1=1 до данного ACK SN -1 (2000) успешно получены (см. рисунок 47).
Вместе с посылкой отправителю ACK SN получатель объявляет также “размер окна”, например - 6000. Это значит, что отправитель может посылать данные с порядковыми номерами от текущего ACK SN = 2001 до (ACK SN + размер окна -1) = 8000, не дожидаясь подтверждения со стороны получателя. Допустим, в данный момент отправитель посылает тысячеоктетный сегмент с порядковым номером данных SN=4001. Если не будет получено новое подтверждение (новый ACK SN), отправитель будет посылать данные, пока он остается в пределах объявленного окна, то есть до номера 8001. После этого посылка данных будет прекращена до получения очередного подтверждения и (возможно) нового размера окна. Однако размер окна выбирается таким образом, чтобы подтверждения успевали приходить вовремя и остановки передачи не происходило - для этого и предназначен метод скользящего окна. Размер окна может динамически изменяться получателем.
Для временной остановки посылки данных достаточно объявить нулевое окно. Но даже и в этом случае через определенные промежутки времени будут отправляться сегменты с одним октетом данных. Это делается для того, чтобы отправитель гарантированно узнал о том, что получатель вновь объявил ненулевое окно, поскольку получатель обязан подтвердить получение “пробных” сегментов, а в этих подтверждениях он укажет также и текущий размер своего окна.
Заголовок TCP-сегмента. TCP-сегмент состоит из заголовка и данных. Заголовок сегмента состоит из 32-разрядных слов и имеет переменную длину, зависящую от размера поля Options, но всегда кратную 32 битам. За заголовком непосредственно следуют данные - часть потока данных пользователя, передаваемая в данном сегменте.
Формат заголовка:
Рис. Формат TCP-заголовка
Значения полей заголовка следующие:
Source Port (16 бит), Destination Port (16 бит) - номера портов процесса-отправителя и процесса-получателя соответственно.
Sequence Number (SN) (32 бита) - порядковый номер первого октета в поле данных сегмента среди всех октетов потока данных для текущего соединения, то есть если в сегменте пересылаются октеты с 2001-го по 3000-й, то SN=2001.
Acknowledgment Number (ACK) (32 бита) - если установлен бит ACK, то это поле содержит порядковый номер октета, который отправитель данного сегмента желает получить. Это означает, что все предыдущие октеты (с номерами от ISN+1 до ACK-1 включительно) были успешно получены.
Data Offset (4 бита) - длина TCP-заголовка в 32-битных словах.
Reserved (6 бит) - зарезервировано; заполняется нулями.
Control Bits(6 бит) - управляющие биты; активным является положение “бит установлен”.
URG - поле срочного указателя (Urgent Pointer) задействовано;
ACK - поле номера подтверждения (Acknowledgment Number) задействовано;
PSH - осуществить “проталкивание” - если модуль TCP получает сегмент с установленным флагом PSH, то он немедленно передает все данные из буфера приема процессу-получателю для обработки, даже если буфер не был заполнен;
RST - перезагрузка текущего соединения;
SYN - запрос на установление соединения;
FIN - нет больше данных для передачи.
Window (16 бит) - размер окна в октетах
Checksum (16 бит) - контрольная сумма, представляет собой 16 бит, дополняющие биты в сумме всех 16-битовых слов сегмента (само поле контрольной суммы перед вычислением обнуляется).
Urgent Pointer (16 бит) - используется для указания длины срочных данных, которые размещаются в начале поля данных сегмента. Указывает смещение октета, следующего за срочными данными, относительно первого октета в сегменте. Например, в сегменте передаются октеты с 2001-го по 3000-й, при этом первые 100 октетов являются срочными данными, тогда Urgent Pointer = 100. Протокол TCP не определяет, как именно должны обрабатываться срочные денные, но предполагает, что прикладной процесс будет предпринимать усилия для их быстрой обработки. Поле Urgent Pointer задействовано, если установлен флаг URG.
Options - поле переменной длины; может отсутствовать или содержать одну опцию или список опций, реализующих дополнительные услуги протокола TCP. Опция состоит из октета "Тип опции", за которым могут следовать октет "Длина опции в октетах" и октеты с данными для опции.
Padding - выравнивание заголовка по границе 32-битного слова, если список опций занимает нецелое число 32-битных слов. Поле Padding заполняется нулями.
Протокол UDP
UDP (User Datagram Protocol, протокол пользовательских дейтаграмм) Протокол UDP используется либо при пересылке коротких сообщений, когда накладные расходы на установление сеанса и проверку успешной доставки данных оказываются выше расходов на повторную (в случае неудачи) пересылку сообщения, либо в том случае, когда сама организация процесса-приложения обеспечивает установление соединения и проверку доставки пакетов (например, NFS).
Пользовательские данные, поступившие от прикладного уровня, предваряются UDP-заголовком, и сформированный таким образом UDP-пакет отправляется на межсетевой уровень.
UDP-заголовок состоит из двух 32-битных слов:
Рис Формат UDP-заголовка
Значения полей:
Source Port - номер порта процесса-отправителя.
Destination Port - номер порта процесса-получателя.
Length - длина UDP-пакета вместе с заголовком в октетах.
Checksum - контрольная сумма. Контрольная сумма вычисляется таким же образом, как и в TCP-заголовке, если UDP-пакет имеет нечетную длину, то при вычислении контрольной суммы к нему добавляется нулевой октет.
После заголовка непосредственно следуют пользовательские данные, переданные модулю UDP прикладным уровнем за один вызов. Протокол UDP рассматривает эти данные как целостное сообщение; он никогда не разбивает сообщение для передачи в нескольких пакетах и не объединяет несколько сообщений для пересылки в одном пакете. Если прикладной процесс N раз вызвал модуль UDP для отправки данных (т.е. запросил отправку N сообщений), то модулем UDP будет сформировано и отправлено N пакетов, и процесс-получатель будет должен N раз вызвать свой модуль UDP для получения всех сообщений.
При получении пакета от межсетевого уровня модуль UDP проверяет контрольную сумму и передает содержимое сообщения прикладному процессу, чей номер порта указан в поле “Destination Port”.
Если проверка контрольной суммы выявила ошибку или если процесса, подключенного к требуемому порту, не существует, пакет игнорируется. Если пакеты поступают быстрее, чем модуль UDP успевает их обрабатывать, то поступающие пакеты также игнорируются. Протокол UDP не имеет никаких средств подтверждения безошибочного приема данных или сообщения об ошибке, не обеспечивает приход сообщений в порядке отправки, не производит предварительного установления сеанса связи между прикладными процессами, поэтому он является ненадежнымпротоколом без установления соединения. Если приложение нуждается в подобного рода услугах, оно должно использовать на транспортном уровне протокол TCP.
Примеры прикладных процессов, использующих протокол UDP: NFS (Network File System - сетевая файловая система), TFTP (Trivial File Transfer Protocol - простой протокол передачи файлов), SNMP (Simple Network Management Protocol - простой протокол управления сетью), DNS (Domain Name Service - доменная служба имен).
1. Как передатчик определяет факт потери положительной квитанции в методе скользящего окна?_______________________
_____________________
2. Сеть с коммутацией пакетов испытывает перегрузку. Для устранения этой ситуации размер окна в протоколах компьютеров сети нужно увеличить или уменьшить?_____________________________
3. Как влияет надежность линий связи в сети на выбор размера окна?______________
_____________________