Синтез ДНК. Репликация
МИКРОСКОП
конструкция микроскопа непосредственно зависит от его назначения. Как Вы уже, наверное, догадались, микроскопы бывают разные, и оптический микроскоп будет значительно отличаться от электронного или рентгеновского. В данной статье будет подробно разбираться строение оптического светового микроскопа, который на данный момент является наиболее популярным выбором любителей и профессионалов, и с помощью которого можно решить множество исследовательских задач.
Оптические микроскопы также имеют свою классификацию и могут различаться по своему строению. Тем не менее, существует основной набор деталей, которые входят в устройство любого оптического микроскопа. Давайте рассмотрим каждую из этих деталей.
В микроскопе можно выделить оптическую и механическую части. Оптика микроскопа включает в себя объективы, окуляры, а также осветительную систему. Штатив, тубус, предметный столик, крепления конденсора и светофильтров, механизмы для регулировки предметного столика и тубусодержателя составляют механическую часть микроскопа.
Начнем, пожалуй, с оптической части.
· Окуляр. Та часть оптической системы, которая непосредственно связана с глазами наблюдателя. В простейшем случае объектив состоит из одной линзы. Иногда для большего удобства, или, как принято говорить, "эргономичности", объектив может быть снабжен, например, "наглазником" из резины либо мягкого пластика. В стереоскопических (бинокулярных) микроскопах имеется два окуляра.
· Объектив. Едва ли не самая важная часть микроскопа, обеспечивающая основное увеличение. Основной параметр - аппертура, о том, что это такое, подробно рассказано в разделе "Основные параметры микроскопов". Объективы делятся на "сухие" и "иммерсионные", ахроматические и апохроматические, и даже в дешевых простых микроскопах представляют собой довольно сложную систему линз. Некоторые микроскопы имеют унифицированные элементы крепления объективов, что позволяет комплектовать прибор в соответствии с задачами и бюджетом потребителя.
· Осветитель. Очень часто используется обыкновенное зеркало, позволяющее направлять на исследуемый образец дневной свет. В настоящее время часто применяют специальные галогенные лампы, имеющие спектр, близкий к естественному белому свету и не вызывающие грубых искажений цвета.
· Диафрагма. В основном в микроскопах применяют так называемые "ирисовые" диафрагмы, названные так потому, что содержат лепестки, подобные лепесткам цветка ириса. Сдвигая или раздвигая лепестки, можно плавно регулировать силу светового потока, поступающего не исследуемый образец.
· Коллектор. С помощью коллектора, расположенного вблизи светового источника, создается световой поток, который заполняет апертуру конденсора.
· Конденсор. Данный элемент, представляющий собой собирающую линзу, формирует световой конус, направленный на объект. Интенсивность освещения при этом регулируется диафрагмой. Чаще всего в микроскопах используется стандартный двухлинзовый конденсор Аббе.
Стоит отметить, что в оптическом микроскопе может быть использован один из двух основных способов освещения: освещение проходящего света и освещение отраженного света. В первом случае световой поток проходит через объект, в результате чего формируется изображение. Во втором - свет отражается от поверхности объекта.
Что касается оптической системы в целом, то в зависимости от ее строения принято выделять прямые микроскопы (объективы, насадка, окуляры располагаются над объектом), инвертированные микроскопы (вся оптическая система располагается под объектом), стереоскопические микроскопы (бинокулярные микроскопы, состоящие по сути из двух микроскопов, расположенных под углом друг к другу и формирующие объемное изображение).
Теперь перейдем к механической части микроскопа.
· Тубус. Тубус представляет собой трубку, в которую заключается окуляр. Тубус должен быть достаточно прочным, не должен деформироваться, что ухудшит оптические свойства, потому только в самых дешевых моделях тубус делается из пластмассы, чаще же используются алюминий, нержавеющая сталь либо специальные сплавы. Для ликвидации "бликов" тубус внутри, как правило, покрывается черной светопоглощающей краской.
· Основание. Обычно выполняется достаточно массивным, из металлического литья, для обеспечения устойчивости микроскопа во время работы. На данном основании крепится тубусодержатель, тубус, держатель конденсора, ручки фокусировки, револьверное устройство и насадка с окулярами.
· Револьверная головка для быстрой смены объективов. Как правило, в дешевых моделях, имеющих всего один объектив, этот элемент отсутствует. Наличие револьверной головки позволяет оперативно регулировать увеличение, меняя объективы простым ее поворотом.
· Предметный столик, на котором размещают исследуемые образцы. Это либо тонкие срезы на предметных стеклах - для микроскопов, работающих в "проходящем свете", либо объемные объекты для микроскопов "отраженного света".
· Крепления, которыми предметные стекла фиксируются на предметном столике.
· Винт грубой настройки фокусировки. Позволяет, изменяя расстояние от объектива до исследуемого образца, добиваться наиболее четкого изображения.
· Винт точной фокусировки. То же самое, только с меньшим шагом и меньшим "ходом" резьбы для максимально точной регулировки.
Строение ДНК-молекулы
Открытие ДНК молекулы произошло в 1953 году. Френсис Крик и Джеймс Уотсон открыли структуру двойной спирали ДНК, их работа впоследствии была отмечена Нобелевской премией.
ДНК представляет собой двойную нить, скрученную в спираль. Каждая нить состоит из «кирпичиков» — из последовательно соединенных нуклеотидов. Каждый нуклеотид ДНК содержит одно из четырёх азотистых оснований — гуанин (G), аденин (A) (пурины), тимин (T) и цитозин (C) (пиримидины), связанное с дезоксирибозой, к последней, в свою очередь, присоединена фосфатная группа. Между собой соседние нуклеотиды соединены в цепи фосфодиэфирной связью, образованной 3’-гидроксильной (3’-ОН) и 5’-фосфатной группами (5’-РО3). Это свойство обуславливает наличие полярности в ДНК, т. е. противоположной направленности, а именно 5’- и 3’-концов: 5’-концу одной нити соответствует 3’-конец второй нити.
Структура ДНК
Первичная структура ДНК — это линейная последовательность нуклеотидов ДНК в цепи. Последовательность нуклеотидов в цепи ДНК записывают в виде буквенной формулы ДНК: например — AGTCATGCCAG, запись ведется с 5’- на 3’-конец цепи ДНК.
Вторичная структура ДНК образуется за счет взаимодействий нуклеотидов (в большей степени азотистых оснований) между собой, водородных связей. Классический пример вторичной структуры ДНК — двойная спираль ДНК. Двойная спираль ДНК — самая распространенная в природе форма ДНК, состоящая из двух полинуклеотидных цепей ДНК. Построение каждой новой цепи ДНК осуществляется по принципу комплементарности, т. е. каждому азотистому основанию одной цепи ДНК соответствует строго определенное основание другой цепи: в комплемнтарной паре напротив A стоит T, а напротив G располагается C и т.д.
Синтез ДНК. Репликация
Уникальным свойством ДНК является ее способность удваиваться (реплицироваться). В природе репликация ДНКпроисходит следующим образом: с помощью специальных ферментов (гираз), которые служат катализатором (веществами, ускоряющими реакцию), в клетке происходит расплетение спирали в том ее участке, где должна происходить репликация (удвоение ДНК). Далее водородные связи, которые связывают нити, разрываются и нити расходятся.
В построении новой цепи активным «строителем» выступает специальный фермент — ДНК-полимераза. Для удвоения ДНК необходим также стратовый блок или «фундамент», в качестве которого выступает небольшой двухцепочечный фрагмент ДНК. Этот стартовый блок, а точнее - комплементарный участок цепи родительской ДНК — взаимодействует с праймером — одноцепочечным фрагментом из 20—30 нуклеотидов. Происходит репликация или клонирование ДНК одновременно на обеих нитях. Из одной молекулы ДНК образуются две молекулы ДНК, в которых одна нить от материнской молекулы ДНК, а вторая, дочерняя, вновь синтезированная.
Таким образом, процесс репликации ДНК (удваивания) включает в себя три основных этапа:
· Расплетение спирали ДНК и расхождение нитей
· Присоединение праймеров
· Образование новой цепи ДНК дочерней нити
В основе анализа методом ПЦР лежит принцип репликации ДНК — синтеза ДНК, который современным ученым удалось воссоздать искусственно: в лаборатории врачи вызывают удвоение ДНК, но только не всей цепи ДНК, а ее небольшого фрагмента.
Функции ДНК
Молекула ДНК человека — носитель генетической информации, которая записана в виде последовательности нуклеотидов с помощью генетического кода. В результате описанной выше репликации ДНК происходит передача генов ДНК от поколения к поколению.
Изменение последовательности нуклеотидов в ДНК (мутации) может приводить к генетическим нарушениям в организме.