Квантификация и формализация содержательных моделей политических ситуаций и процессов
Основными компонентами форматизации с целью последующего применения квантификации, как правило, являются следующие: разработка гипотез и выработка системы категорий; выбор способов получения выводов и логика преобразований теоретических знаний в практические следствия; выбор математического отображения, адекватно применяемой теории.
Анализ при помощи простых и сложных индикаторов. Данный метод положен в основу создания большинства современных информационных банков, в которые постоянно вносятся сведения о событиях, происходящих в определенной стране, регионе или мире. Часто одному абстрактному понятию соответствует несколько индикаторов, в таком случае на базе этих простых индикаторов формируется сложный индикатор или индекс.
Факторный анализ. Применяется в тех случаях, когда имеются причины для ограничения количества индикаторов (переменных). Основная идея метода заключается в том, что индикаторы, тесно с коррелированные друг с другом, указывают на одну и ту же причину. Среди имеющихся индикаторов при помощи компьютера отыскиваются такие их группы, которые имеют высокий уровень (значение) корреляции, и на их базе создаются так называемые комплексные переменные, которые объединены единым коэффициентом корреляции. Для выполнения какой-либо разновидности факторного анализа необходима ЭВМ со специальной программой, способной на базе индикаторов сформировать факторы.
Анализ корреляций. В ряде случаев возникает необходимость доказать наличие или отсутствие зависимости между двумя переменными. При этом первоначальное значение будет иметь сам факт наличия отношений зависимости, а также ее степень. Если исследователь располагает достаточным объемом информации, то при помощи ЭВМ он в состоянии выяснить наличие корреляции и вычислить ее коэффициент, т.е. степень взаимодействия. На практике задача обычно бывает усложнена тем, что требуется выяснить отношения между тремя, четырьмя и более независимыми переменными либо определить влияние одной переменной или целой группы на другую группу переменных, что значительно усложняет математические расчеты.
Анализ регрессий. Данный метод используется в тех случаях, когда необходимо не только выяснить наличие зависимости, но и показать ее характер, т.е. выяснить, что является причиной (независимой переменной), а что — следствием (зависимой переменной). В таких случаях составляется уравнение функциональной зависимости, где х зависим от у с соответствующими коэффициентами регрессии. Регрессия может быть линейной (чем больше х, тем больше у; график выражен прямой, идущей вверх). Таким образом, например, рассчитывается уровень милитаризации — расходы на оборону являются функцией от валового национального продукта. В ряде случаев зависимость бывает непрямой, и тогда мы имеем дело с анализом нелинейных регрессий (т.е. функцией, описывающей более сложные отношения зависимости, график имеет форму параболы).
Анализ тенденций используется в основном в прогностических целях для описания будущих отношений причины и следствия (взаимосвязи двух переменных, одна из которых является независимой). Поскольку количественные показатели отношений для характеристики будущего неизвестны, в уравнении регрессии, описывающем их отношения в настоящем, независимая переменная заменяется на время, числовые значения которого в будущем известны. Данный прием имеет свои недостатки, поскольку игнорируются будущие значения показателя причины т, возможность изменения зависимости между переменными. Для анализа тенденции собирают возможно большее число данных с возможно малыми временными интервалами и вычисляют скорость эволюции системы, после чего строят график, на основе которого составляют уравнение регрессии и оценивают его параметры. Далее приступают непосредственно к прогнозу, т.е. вычисляют будущие значения показателя следствия с помощью уравнения регрессии, и продолжают график, после чего осуществляют интерпретацию результатов.
Спектральный анализ. Эта методика показывает фундаментальные колебания в сложных эволюционирующих структурах, с ее помощью вычисляется частота и продолжительность фазы. Основой метода служит выделение структуры колебательного процесса (например, популярность правительства) и построение графика синусоидальных колебаний. Для этого собирают хронологические данные, вычисляют уравнение колебания и создают циклы, на базе которых строятся графики.
Экстраполяция. Методика представляет собой экстраполяцию событий и явлений прошлого на будущий период, для чего осуществляется сбор данных в соответствии с избранными индикаторами по определенным временным промежуткам (неделям, месяцам и т.д.), после этого проводится подсчет среднего значения индикатора, в соответствии с которым строится хронологический график. Как правило, экстраполяция делается только в отношении небольших временных промежутков в будущем, поскольку при более длительном сроке существенно возрастает вероятность ошибки.