Типы памяти микроконтроллеров: память программ, память данных, регистры.
В микроконтроллерах используется три основных вида памяти – это память программ, память данных и регистры. Память программ представляет собой постоянную память (ПЗУ), предназначенную для хранения программного кода (команд). Ее содержание в ходе выполнения программы не изменяется. Память данных предназначена для хранения переменных в процессе выполнения программы. Регистры МК – этот вид памяти включает в себя внутренние регистры процессора и регистры, которые служат для управления периферийными устройствами (регистры специальных функций).
Память программ
Основным свойством памяти программ является ее энергонезависимость, то есть возможность хранения программы при отсутствии питания. С момента появления МК технология энергонезависимых запоминающих устройств претерпела множество изменений, которые позволили не только повысить информационную емкость, быстродействие, надежность хранения информации, но и привели к появлению принципиально новых технологий программирования памяти МК. С точки зрения пользователей МК следует различать пять типов энергонезависимой памяти программ.
1. ПЗУ масочного типа – Mask ROM. Содержание ячеек ПЗУ этого типа заносится на заводе-изготовителе МК с помощью масок и не может быть заменено или «допрограммировано». Поэтому МК с такой памятью программ следует использовать только после достаточно длительной опытной эксплуатации. Основным недостатком данной памяти является необходимость значительных затрат на создание нового комплекта фотошаблонов и их внедрение в производство. Обычно такой процесс занимает 2 – 3 месяца и является экономически выгодным только при выпуске несколько десятков тысяч приборов. Достоинством ПЗУ масочного типа является высокая надежность хранения информации по причине программирования в заводских условиях с последующим контролем качества.
2. ПЗУ, однократно программируемые пользователем – OTPROM (One-Time Programmable ROM). В незапрограммированном состоянии каждая ячейка памяти однократно программируемого ПЗУ при считывании возвращает код FFh. Программированию подлежат только те разряды, которые должны содержать «0». Если в процессе программирования некоторые разряды какой-либо ячейки памяти были установлены в «0», то восстановить в этих разрядах единичное значение уже невозможно. Поэтому рассматриваемый тип памяти и носит название «однократно программируемые ПЗУ». Технология записи информации состоит в многократном приложении импульсов повышенного напряжения к элементарным ячейкам байта памяти (т.е. к битам), подлежащим программированию. МК с однократно программируемым ПЗУ рекомендуется использовать в изделиях, выпускаемых небольшими партиями.
3. ПЗУ, программируемые пользователем с ультрафиолетовым стиранием – EPROM (Erasable Programmable ROM). ПЗУ данного типа программируются электрическим сигналами и стираются с помощью ультрафиолетового облучения. Ячейка памяти EPROM представляет собой МОП-транзистор с «плавающим» затвором, заряд на который переносится с управляющего затвора при подаче на него высокого напряжения. При этом МОП-транзистор переключается в открытое состояние, и при обращении к ячейке считывается «0». Для стирания содержимого ячейки она облучается ультрафиолетовым светом, который сообщает заряду на плавающем затворе энергию, достаточную для преодоления потенциального барьера и стекания на подложку. Этот процесс может занимать от десятков секунд до нескольких минут. Число циклов стирания/программирования ПЗУ данного типа ограничено и составляет 15-25 раз. Обычно микросхемы EPROM выпускаются в керамическом корпусе с кварцевым окошком для доступа ультрафиолетового света. МК с ПЗУ данного типа имеют высокую стоимость, поэтому их рекомендуется использовать только в опытных образцах изделий.
4. ПЗУ, программируемые пользователем с электрическим стиранием – EEPROM (Electrically Erasable Programmable ROM). Электрически программируемые и электрически стираемые ПЗУ совместили в себе положительные качества рассмотренных выше типов памяти. Максимальное число циклов стирания/программирования ПЗУ типа EEPROM в составе МК обычно равно 100000. Эта память позволяет реализовать побайтное стирание и побайтное программирование. По цене ЕEPROM занимают среднее положение между OTPROM и EPROM. Основное преимущество использования ЕEPROM заключается в том, что можно многократно стирать и программировать МК, не снимая его с платы. Таким способом можно производить отладку и модернизацию программного обеспечения. Это дает огромный выигрыш на начальных стадиях разработки микроконтроллерных устройств или в процессе их изучения, когда много времени уходит на поиск причин программ. Несмотря на очевидные преимущества, только в редких моделях современных МК такая память используется для хранения программ. Связано это с тем, что, во-первых, ПЗУ типа ЕEPROM имеют ограниченную емкость и могут использоваться в качестве резидентной памяти программ только в маловыводных МК с небольшим объемом памяти. Во-вторых, почти одновременно с ЕEPROM появились ПЗУ типа Flash, которые при сходных потребительских характеристиках имеют более низкую стоимость.
5. ПЗУ с электрическим стиранием типа Flash – Flash ROM. Электрически программируемые и электрически стираемые ПЗУ типа Flash функционально мало отличаются от ЕEPROM. Основное отличие состоит в способе стирания записанной информации. Для увеличения объема памяти транзистор адресации каждой элементарной ячейки был удален, что не дает возможности программировать каждый бит памяти отдельно. Память типа Flash стирается и программируется страницами или блоками. Страница, как правило, составляет 8, 16 или 32 байта памяти, блоки могут объединять некоторое число страниц, вплоть до полного объема резидентного ПЗУ МК. Если необходимо изменить содержимое одной ячейки Flash-памяти, потребуется перепрограммировать весь блок. Упрощение декодирующих схем, произошедшее из-за уменьшения числа транзисторов, и, как следствие, снижение стоимости и размеров привели к тому, что МК с Flash-памятью в настоящее время становятся конкурентоспособными не только по отношению к МК с однократно программируемыми ПЗУ, но и с масочными ПЗУ также.
Выше отмечалось, что ЕEPROM ПЗУ практически никогда не используется для хранения программ, но оно имеет режим побайтного программирования. Данное обстоятельство сделало ЕEPROM идеальным энергонезависимым запоминающим устройством для хранения изменяемых в процессе эксплуатации изделия настроек пользователя. В качестве примера достаточно вспомнить современный телевизор: настройки каналов сохраняются при отключении питания. Одной из тенденций совершенствования резидентной памяти 8-разрядных МК стала интеграция на кристалл МК сразу двух моделей энергонезависимой памяти: OTPROM или Flash ROM – для хранения программ и EЕPROM – для хранения перепрограммируемых констант.
Память данных
Память данных (ПД) микроконтроллеров предназначена для хранения промежуточных данных в ходе выполнения программы. В современных микроконтроллерах память данных подразделяется по выполняемым функция и способу реализации на два вида:
1) оперативная память – ОЗУ;
2) память хранения данных в EEPROM.
Оперативная память (англоязычный термин RAM) является ОЗУ статического типа, так как ячейки ее выполняются на основе триггеров. Эта память энергозависима, так как ее содержимое теряется при выключении электропитания. Достоинством статического ОЗУ является высокое быстродействие, простота управления памятью. Однако такое ОЗУ имеет существенные недостатки: большое энергопотребление и большое количество активных компонентов (транзисторов), необходимых для ее реализации. Объем оперативной памяти данных МК, как правило, невелик и составляет обычно десятки или сотни байт.
Второй вид ПД – это память хранения данных в EEPROM. Эту память можно использовать для данных, которые необходимо сохранить при выключении электропитания, а также неоперативных данных. Неоперативными данными могут быть настроечные параметры, изменяемые константы. Объем памяти хранения данных небольшой и обычно составляет несколько десятков байт. Эту память нельзя использовать в качестве оперативной. Во-первых, она является очень «медленной». Так время записи в ее ячейку составляет несколько миллисекунд. Во-вторых, она имеет ограниченное количество циклов записи-стирания.
Регистры МК
Подобно всем МПС микроконтроллеры имеют набор регистров, которые используются для управления их ресурсами. В число этих регистров входят обычно регистры процессора (аккумулятор, регистр состояния, индексные регистры), регистры управления (управления прерываниями, таймером), регистры, обеспечивающие ввод/вывод данных (регистры данных портов, регистры управления параллельным, последовательным или аналоговым вводом/выводом). Обращение к этим регистрам может производиться различными способами, а это оказывает существенное влияние на производительность.
В МК с RISC-процессором все регистры (часто и аккумулятор) располагаются по явно задаваемым адресам. Это обеспечивает более высокую гибкость при работе процессора.
Одним из важнейших вопросов является размещение регистров в адресном пространстве МК. В некоторых МК все регистры и память данных располагаются в одном адресном пространстве. Это означает, что память данных совмещена с регистрами. Такой подход называется «отображением ресурсов МК на память».
В других МК адресное пространство устройств ввода/вывода отделено от пространства памяти. Отдельное пространство ввода/вывода дает некоторое преимущество процессорам с Гарвардской архитектурой, обеспечивая возможность считывать команду во время обращения к регистру ввода/вывода.