Основные характеристики ЭВМ
Основные характеристики ЭВМ определяются характеристиками его компонентов.Каждый компонент представляет собой отдельное устройство (device, unit), которое само по себе и во взаимодействии с другими устройствами и определяет характеристики ЭВМ.
Основными компонентами ЭВМ являются:
• центральный процессор (ЦП);
• системная плата;
• основная память;
• жесткий диск;
• монитор;
• графическая карта;
• дисковод для компакт-дисков (CD или DVD).
В литературе и в прайс-листах торговых фирм можно встретить обозначения составляющих компьютера, включающие в себя перечисления основных характеристик.
Процессор Pentium III 600 MHz Intel 256 Kb 133 MHz.
Это обозначает следующее: процессор модели Pentium III, с максимальной частотой работы – 600 MHz, производства Intel, объем вторичного кэша 256 Kb, частота системной шины 133 MHz.
Монитор Sony CPD-G200 0.25 17" 1280x1024 75 Hz ТСО’99.
Это обозначает следующее: монитор производства Sony, марки CPD-G200, с величиной “зерна” 0,25 мм, диагональю экрана 17 дюймов, максимальным разрешением 1280х1024 точек и частотой регенерации 75 Гц, удовлетворяет стандарту ТСО’99.
HDD IBM 13.7 GB IDE 5400 rpm.
Это обозначает следующее: жесткий диск производства IBM, емкостью 13,7 Гбайт, с интерфейсом IDE, скоростью вращения 5400 оборотов в минуту.
Составляющие ЭВМ
Модели процессоров и их характеристики
Основные понятия
Основной компонент компьютера – процессор, точнее центральный процессор (Central Processing Unit, CPU). Подобные процессоры находятся не только в PC (Personal Computer) – в принципе процессором оборудована каждая современная стиральная машина или микроволновая печь. CPU регулирует, управляет и контролирует рабочий процесс. Он находится в постоянном взаимодействии с другими элементами материнской платы до тех пор, пока PC включен.
Процессор – блок компьютера, выполняющий арифметические и логические операции, управляющий работой всех его составных частей.
В области PC имеется однозначный лидер на рынке – фирма Intel, которая контролирует около 80% рынка микропроцессоров для PC. Наиболее известны еще две фирмы: AMD и Cyrix.
Микропроцессоры отличаются друг от друга двумя основными характеристиками – типом (моделью) и тактовой частотой.
Процессоры, как и все электрические схемы, получили обозначение типов. Для PC обозначение CPU младших поколений начинается с 80, затем следуют две или три цифры, которые при необходимости дополняются буквами или дальнейшими цифрами, указывающими тактовую частоту процессора. Тактовая частота задается генератором тактовых импульсов.
Генератор тактовых импульсов –устройство, генерирующее последовательность электрических импульсов.
Частота генератора тактовых импульсов является одной из основных характеристик ПК и во многом определяет скорость его работы, ибо каждая операция машины выполняется за определенное количество тактов. Разные процессоры выполняют одну и ту же операцию за разное количество тактов.
Определение типа процессора чаще всего начинается с сокращения, идентифицирующего изготовителя. Например: i80486DX-50 обозначает процессор типа 80486, изготовленный фирмой Intel и работающий с тактовой скоростью 50 МГц. (Герц – единица частоты. Частота в 1 Герц означает, что производится одно действие в секунду.) Микросхемы фирмы Advanced Micro Devices обозначаются префиксом AMD, a процессоры Cyrix маркируются как СХ. При запуске PC эти буквы появляются на экране монитора перед номером типа процессора. Процессоры других изготовителей, установленные не как CPU, уже тяжело идентифицировать. Обозначение “80” перед именем процессора часто опускают.
Производительность – относительная эффективность работы компьютера или устройства, определяемая с помощью тестов.
Производительность CPU характеризуется следующими основными параметрами:
• степенью интеграции;
• внутренней и внешней разрядностью обрабатываемых данных;
• тактовой частотой;
• памятью, к которой может адресовываться CPU.
Степень интеграции микросхемы (чипа) показывает, сколько транзисторов может в нем уместиться. Для процессора Pentium (80586) Intel – это приблизительно 3 млн. транзисторов на 3,5 см2.
Внутренняя разрядность данных. Существенной характеристикой процессора является количество бит, которое он может обрабатывать одновременно внутри CPU. Для арифметических команд, выполняющихся CPU, важно, сколько бит могут обрабатываться одновременно: 16, 32 или 64.
Внешняя разрядность данных. Увеличение производительности системы вследствие увеличения количества бит, обрабатываемых внутри процессора, ощущалось бы, если бы другие элементы материнской платы смогли справиться с таким обменом данными с CPU.
По этой причине материнская плата с процессором 386SX (32-битная внутренняя разрядность и 16-битная внешняя) может работать порой так же, как и плата с процессором 386DX (32-битная разрядность, как внутренняя, так и внешняя).
Тактовая частота. Конструктивные элементы, расположенные на материнской плате, работают строго с указанным тактом, чтобы координировать друг с другом отдельные шаги работы. Также в процессе работы CPU выполняет определенные операции (запись, чтение, обработка данных и т.д.) за точно отведенные единицы времени, что необходимо для синхронизации процесса. Очевидно, что обработка информации тем быстрее, чем выше тактовая частота CPU. Но при этом следует обратить внимание и на другие микросхемы. Они должны продуцировать в CPU данные с такой тактовой частотой, чтобы, как говорят, не затопить его в потоке данных или не заставить ждать новой информации. Конечно, имеются процессоры, которые могут работать с более высокой частотой. Однако только заменой кварцевого генератора опасно заставлять работать всю материнскую плату с более высокой тактовой частотой, потому что, если даже CPU и “выживет”, то этого, возможно, не вынесут другие составные элементы платы.
Адресация памяти. CPU находится в прямом контакте с оперативной памятью PC. Данные, которые обрабатывает CPU, должны временно располагаться в RAM и для дальнейшей обработки снова могут быть востребованы из памяти. Для CPU 8086/88 область адресации располагается максимум до 1 Мбайт. Процессор 80486 может обеспечить доступ уже к 4 Гбайт памяти.
Реальный режим (Real Mode) соответствует возможностям CPU 8086/8088, позволяя адресовать не более 1 Мбайт памяти.
Чтобы поддержать совместимость с ранее разработанными программами, процессоры 286 и даже Pentium работают под управлением операционной системы MS DOS в реальном режиме и используют при этом, конечно же, минимальные возможности процессора.
Защищенный режим (Protected Mode) появился впервые в CPU 80286. В этом режиме CPU может адресовать до 16 Мбайт физической и до 1 Гбайта виртуальной памяти. Если физическая память полностью загружена, то “непоместившиеся” данные располагаются на винчестере. Таким образом, CPU работает не с реальными, а с виртуальными адресами, которые управляются через специальные таблицы, с тем чтобы информацию можно было найти (или снова записать). Эту память называют еще виртуальной памятью, потому что фактически она не существует.
Кроме того, в защищенном режиме возможна поддержка мультизадачного режима (Multitasking). При этом CPU может выполнять различные программы в выделенные кванты времени, выпадающие на каждую из программ (пользователю же кажется, что программы выполняются одновременно).
Виртуальный режим. Впервые, начиная с процессора 386, CPU способны эмулировать работу нескольких процессоров 8086 (максимум 256) и тем самым обеспечить многопользовательский режим таким образом, что на одном PC могут быть запущены одновременно даже различные операционные системы. Естественно, увеличивается и возможное количество выполняемых приложений.