Способы преобразования чертежа
Цель работы. изучение способов преобразования чертежа.
Объем и оформление работы. Выполнить пять задач на двух или трех листах формата А3 (297х420) в масштабе 1:1. Координаты точек взять из таблицы 1. Вариант задания соответствует сумме двух последних цифр студенческого билета или зачетной книжки. Чертежи и надписи выполнить в соответствии с ГОСТ 2.303-68 (линии) и ГОСТ 2.304-68 (шрифты чертежные). Исходные данные и результат вычертить сплошной основной линией. Линии построения, оси, линии связи и вспомогательные линии – сплошной тонкой линией. Обозначения точек, прямых, плоскостей, алгоритм решения выполнить шрифтом размера 5.
Общие сведения.Решение задач эпюра осуществляется применением способов преобразования чертежа.
Пользуясь способами преобразования чертежа, можно перейти от общих положений прямых линий и плоских фигур к частным. Достигается это:
1) заменой системы плоскостей проекций на новую систему плоскостей проекций, чтобы объект, оставаясь неподвижным, оказался в частном положении по отношению к новой системе;
2) перемещение объекта в пространстве (способ вращения, параллельного перемещения).
Задача 1. Определить величину двугранного угла, образованного треугольниками ABCи ABDспособом замены плоскостей проекций (рис. 7) .
Двугранный угол измеряется линейным углом, если его спроецировать на плоскость, перпендикулярную к ребру AB . Необходимо сделать две замены плоскостей проекций. При первой замене переходим от системы П2/П1 с осью Х1-2 к системе П1/П4 с осью Х1-4. Выберем П4 AB.
Тогда ось Х1-4 A1B1 .Находим новые проекции точек A4, B4,C4,D4. Для этого проведем от проекций A1, B1,C1,D1 линии связи перпендикулярно к оси Х1-4 и отложим на них от новой оси Х1-4 расстояния, замеренные от заменяемой оси Х1-2 до заменяемых проекций A2, B2,C2,D2 . Соединяем соответствующие построенные проекции точек. Проекция A4 B4 будет характеризовать величину ребра AB.
При второй замене переходим от системы П1/П2 с осью Х1-4 к системе П4/П5 с осью Х4-5 . Выбираем П5 П4 и П5 AB;ось Х4-5
будет перпендикулярно к A4B4 .Находимновые проекции точек A5, B5,C5,D5 . Для этого проведем от проекций A4, B4,C4,D4 проведем линии связи перпендикулярно к Х4-5 и отложим на них от новой оси Х4-5 расстояния замеренные от заменяемой оси Х1-4 до заменяемых проекций A1, B1,C1,D1 . Ребро AB
Рис.7.
проецируется в точку A5≡B5. Соединяем ее с D5 и C5, получим величину искомого двугранного угла C5A5D5=φ.
Задача 2. Определить кратчайшее расстояние между двумя скрещивающимися прямыми ABиCDспособом замены плоскостей проекций.Найтипроекции этого отрезка (рис.8).
Кратчайшим расстоянием между двумя скрещивающимися прямыми является их общий перпендикуляр. Если одна из прямых будет перпендикулярна к плоскости проекций, то она спроецируется на нее точкой. Перпендикуляр, построенный из этой точки на проекцию второй прямой, будет искомой величиной. Необходимо сделать две замены плоскостей проекций, аналогично тем, что сделали в предыдущей задаче
1. Х1-2 Х1-4 ; П4 П1 ; П4 AB; Х1-4 A1B1,
2. Х1-4 Х4-5 ; П5 П4 ; П5 AB ; Х4-5 A4B4,
При построении новых проекций точек расстояние от заменяемой оси до заменяемой проекции откладывается по линиям связи от новой оси. Из
A5 ≡B5 - построим перпендикуляр на C5D5.Это и есть величина кратчайшего расстояния между скрещивающимися прямыми ABиCD. Остальные проекции точек K и L определяем по линиям связи и принадлежности K C4D4 , L4K4 Х4-5 ,L4 A4B4 и т.д.
Задача 3. Определить расстояние от точки Dдо плоскости треугольника ABCметодом вращения вокруг проецирующей прямой. Определить проекции основания перпендикуляра (рис. 9 ).
Расстояние от точки D до плоскости определяется длиной перпендикуляра, проведенного из точки D до плоскости треугольника ABC . Если плоскость ABC сделать проецирующей, то этот перпендикуляр спроецируется на соответствующую плоскость проекций без искажения.
Сделаем плоскость треугольника ABC фронтально проецирующей, вращая ее вокруг горизонтально проецирующей оси i (i1 ,i2 ) , которую выберем проходящей через точку C(C1,C2) . В плоскости треугольника ABCпроведем горизонтальh(h2, h1) . Повернем ее до положения перпендикулярной к фронтальной плоскости проекций. Проекция центра вращения О1совпадает с i1 , радиус вращения R равен O111 . Построим треугольник A1B1C1 , затем повернутую проекцию точки D-D1 . Построение проекций A1, B1,C1,D1 сделаем засечками относительно проекции горизонтали h. Фронтальные проекции точек A2,B2,C2,D2 будут
перемещаться по горизонтальным линиям, на пересечении их с линиями связи, приведенными из A1,B1,C1,D1. В итоге получается А12,B12,С12, D12.
Рис.8.
Соединим А12,B12,С12. Из D12.построим перпендикуляр к А12,B12,С12.Обозначим проекцию его основания Е12. Отрезок D12 Е12- искомое расстояние от точки D до плоскости треугольника ABC. Проекцию E1находим на пересечении линии связи, проведенной из Е12 , с перпендикуляром, построенного из D1 к проекции h1. Проекции E1и E2 находим обратным вращением.
Рис.9.
Задача 4. Определить величину треугольника ABCметодом вращения вокруг линии уровня (рис. 10).
Рис.10.
Повернем треугольник ABCвокруг горизонталиh, которая будет являться осью вращения. Точка С останется неподвижной С1 С11 .
Рассмотрим вращение точки В. Плоскость θ(θ1) перпендикулярна оси вращения ( θ1 h1 ). Центр вращения О(О1,О2) определяется в пересечении оси вращения с плоскостью вращения h =О. Радиус вращения – ОВ . Величину ОВ определяем способом прямоугольного треугольника, отложив на перпендикуляре к В1О1 отрезок В0В1 , равный разности высот точек В и О- ∆ZВО. Гипотенуза В0О1будет характеризовать величину ВО, которую отложим от О1 на следе – проекции θ1. Получим проекцию В11 повернутой точки В.
Через А1 проведем след-проекцию ∑1 плоскости вращения точки А. Соединим проекцию В 1 повернутой точки В с проекцией 11неподвижной точки 1 и продолжим эту линию до пересечения с ∑1. Это будет проекция А11повернутой точки А. Соединив A11, B11,C11 , получим натуральную величину треугольника АВС.
Задача 5. Определить натуральную величину угла между прямой AD и плоскостью треугольника АВС методом плоскопараллельного перемещения и вращения вокруг проецирующей прямой (рис.11).
Угол между прямой и плоскостью измеряется углом между самой прямой и ее проекцией на данную плоскость.
Для решения задачи сделаем плоскость треугольника сначала проецирующей, затем плоскостью уровня. Для этого проведем в плоскости горизонталь h (h2, h1) через точку С, разместим ее перпендикулярно фронтальной плоскости h (h1,h2), построим относительно h1(засечками) треугольник A11 B11C11 , равновеликий A1 B1C1, а затем проекцию D11 (также двумя засечками). Фронтальные проекции точек A2,B2,C2,D2 переместятся по горизонтальным линиям до пересечения с линиями связи , проведенными из A1,B1,C1, D1 . Полученные проекции A12, B12,C12 лежат на одной прямой. Соединим D12с А12.
При втором перемещении фронтальная проекция сохраняет вид и величину. Разместим A2B2C2 параллельно горизонтальной плоскости проекции и обозначим A22B22C22, затем построим D22 (засечками). Горизонтальные проекции A1,B1,C1,D1 переместятся в плоскостях , параллельных плоскости П2 , и будут находится на линиях связи, проведенных из A22, B22,C22,D22 . Обозначим и соединим A21 B21C21 и D21 с A21 .
Проекция A1 B1C1 -есть величина треугольника АВС . Повернем DA вокруг горизонтально проецирующей оси i (i1 ,i2 ), проходящей через точку А , до положения, параллельного плоскости П2. Проекции точки D в новом положении обозначим D31и D32. Угол D32A32B22 есть искомый угол между прямой AD и плоскостью треугольника ABC.
Рис.11.