Билет 3. Ультраструктурная организация и химический состав цитомембран.
Билет 3. Ультраструктурная организация и химический состав цитомембран.
Цитомембраны-внутриклеточные цитоплазматические мембраны различых типов,представляющие собой основные элементы ультраструктурной организации клеток.
Цитоплазматическая мембрана (плазмолемма, ЦПМ) – это мембрана, которая окружает цитоплазму.
Строение ЦПМ. ЦПМ имеет трехслойное строение:
- 2 ограничивающих осмиофильных слоя.
- 1 центральный осмиофобный слой. В этих слоях гидрофильные головки обращены наружу, а гидрофобные хвосты – внутрь. К гидрофильным головкам прилегают углеводородные цепи.
ЦПМ является динамической структурой с подвижными компонентами, поэтому ее представляют как мобильную текучую структуру.
Химический состав ЦПМ:
- Белки – до 75%.
- Жиры (липиды) – до 45%.
- Углеводы – до 5%.
По функции мембранные белки разделяют на:
- Структурные.
- Белки транспортных систем.
- Ферменты (энзимы).
Функции ЦПМ:
- Защитная.
- Транспортная (транспорт пит. веществ, ионов).
- Биосинтетическая (синтез белков – компонентов клеточной стенки и капсулы).
- Рецепторная (клетка бактерии обрабатывает сигналы, поступающие из окружающей среды).
- Энергетическая и дыхательная (в ней есть окислительные ферменты и др).
- Мембрана содержит особые участки для присоединения хромосомы и плазмид при их репликации и последующей сегрегации, в ней имеются центры роста мембраны.
- Также у ряда бактерий ЦПМ принимает участие в спорообразовании.
- Билет 2. Физико-химические свойства цитоплазмы.
Цитоплазма живой клетки под световым микроскопом имеет вид прозрачной слизистой полужидкой однородной массы, не обладающей никакой внутренней структурой.
В нее погружены остальные органоиды клетки. Химический состав и физические свойства цитоплазмы очень сложны. Она не является однородным химическим веществом, а представляет собой организованную и постоянно меняющуюся систему из смеси разнообразных органических соединений, которые находятся частью в коллоидном состоянии, а частью в состоянии истинного раствора. Разнообразные минеральные соли, сахара и другие воднорастворимые соединения находятся в цитоплазме в истинном растворе. Белки, нуклеиновые кислоты, липоиды (жироподобные вещества), не растворимые в воде, образуют коллоидные растворы. Коллоидное состояние важнейших органических веществ цитоплазмы резко увеличивает поверхность соприкосновения компонентов при химических реакциях, протекающих с участием ферментов, и дает возможность (при наличии мембран) осуществлять в одно и то же время различного типа реакции в отдельных участках цитоплазмы.
Таким образом, по физическим свойствам цитоплазма представляет собой многофазный коллоидный раствор. Его существование связано с большим количеством воды — дисперсионной среды коллоида. Содержание воды в деятельной цитоплазме колеблется от 60 до 90%; в цитоплазме покоящихся семян и спор воды значительно меньше (5—15%). Большое количество воды объясняется главным образом тем, что в цитоплазме постоянно происходят сложнейшие химические реакции, для осуществления которых необходимо, чтобы реагирующие соединения находились в растворе.
Предполагают, что вода может находиться в связанном состоянии с другими веществами цитоплазмы и прежде всего с белками
Билет 18. ДНК эукариотических клеток, строение и функции.
ДНК содержит информацию о структуре различных видов РНК и белков. В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах).
ДНК эукариотических клеток линейная.
Билет 19 строение и функции хлоропласта.структура матрикса хлоропластов.
Строение хлоропласта.
Снаружи хлоропласт покрыт оболочкой, состоящей из двух липопротеиновых мембран, внешней и внутренней. они отделены друг от друга межмембранным пространством.Внутренняя мембрана хлоропластов, как и других пластид образует складчатые впячивания внутрь матрикса или стромы. В зрелом хлоропласте высших растений видны два типа внутренних мембран. Это- мембраны, образующие плоские, протяженные ламеллы стромы, и мембраны тилакоидов, плоских дисковидных вакуолей или мешков.
Связь внутренней мембраны хлоропласта с мембранными структурами внутри него хорошо прослеживается на примере мембран ламелл стромы. В этом случае внутренняя мембрана хлоропласта образует узкую (шириной около 20нм.) складку, которая может простираться почти через всю пластиду. Таким образом, ламелла стромы может представлять собой плоский полый мешок или же иметь вид сети из разветвленных и связанных друг с другом каналов, располагающихся в одной плоскости. Обычно ламеллы стромы внутри хлоропласта лежат параллельно и не образуют связей между собой.
Кроме мембран стромы в хлоропластах обнаруживаются мембранные тилакоиды. Это плоские замкнутые мембранные мешки, имеющие форму диска. Величина межмембранного пространства у них также около 20-30нм. Такие тилакоиды образуют стопки наподобие столбика монет, называемые гранами. Число тилакоидов на одну грану варьирует: от нескольких штук до 50 и более. Количество гран в хлоропластах высших растений может достигать 40-60. Тилакоиды в гране сближены друг с другом так, что внешние слои их мембран тесно соединяются; в месте соединения мембран тилакоидов образуется плотный слой толщиной около 2нм. В состав граны кроме замкнутых камер тилакоидов обычно входят и участки ламелл, которые в местах контакта их мембран с мембранами тилакоидов тоже образуют плотные 2-нм слои. Ламеллы стромы, таким образом как бы связывают между собой отдельные граны хлоропластов. Однако полости камер тилакоидов всегда замкнуты и не переходят в камеры межмембранного пространства ламелл стромы.
В матриксе ( строме) хлоропластов обнаруживаются молекулы ДНК, рибосомы; там же происходит первичное отложение запасного полисахарида, крахмала, в виде крахмальных зерен.
БИЛЕТ 21 ПРОФАЗА МИТОЗА
Митоз (от греч. митос — нитка), или непрямое деление клетки, представляет собой непрерывный процесс, в результате которого происходит сначала удвоение, а затем равномерное распределение наследственного материала, содержащегося в хромосомах, между двумя образующимися клетками. В этом его биологическое значение.
Во время митоза ядро проходит четыре последовательные фазы: профазу, метафазу, анафазу и телофазу.
Профаза (от греч. про — раньше, фазис — проявление). Это первая фаза деления ядра, во время которой внутри ядра появляются структурные элементы, имеющие вид тонких двойных нитей, что и обусловило название этого типа деления — митоз. В результате спирализации хромонем хромосомы в профазе уплотняются, укорачиваются и становятся отчетливо видимыми. К концу профазы можно хорошо наблюдать, что каждая хромосома состоит из двух тесно соприкасающихся одна с другой хроматид. В дальнейшем обе хроматиды соединяются общим участком — центромерой и начинают постепенно передвигаться к клеточному экватору.
В середине или в конце профазы ядерная оболочка и ядрышки исчезают, центриоли удваиваются и отходят к полюсам. Из материала цитоплазмы и ядра начинает формироваться веретено деления. Оно состоит из двух видов нитей: опорных и тянущих (хромосомных). Опорные нити составляют основу веретена, они тянутся от одного полюса клетки к другому. Тянущие нити соединяют центромеры хроматид с полюсами клетки и обеспечивают в последующем движение к ним хромосом. Митотический аппарат клетки очень чувствителен к различным внешним воздействиям. При действии радиации, химических веществ и высокой температуры клеточное веретено может разрушаться, возникают всевозможные неправильности в делении клетки
Тонкое строение хромосом.
Химический анализ структуры хромосом показал наличие в них двух основных компонентов: дезоксирибонуклеиновой кислоты (ДНК) и белков типа гистонов и протомите (в половых клетках). Исследования тонкой субмолекулярной структуры хромосом привели ученых к выводу, что каждая хроматида содержит одну нить — хромонему.Каждая хромонема состоит из одной молекулы ДНК. Структурной основой хроматиды является тяж белковой природы. Хромонема уложена в хроматиде в форму, близкую к спирали.
Центромера (centromere): компактный участок хромосомы , где соединяются сестринские хроматиды(образующие после репликации две копии каждой хромосомы). К центромере присоединяются волокна митотического веретена при делении клетки. Центромера состоит из альфа-саттелитных ДНК. Она обеспечивает сегрегацию хромосом в клеточных делениях.
Тепомера хромосомназывают специализированный участок конца хромосомы. К ней прикрепляются теломерспецифические белки, образующие «шапочку» (cap) для защиты конца хромосомы. Теломеры предположительно препятствуют патологическому слиянию концов хромосом конец в конец, обеспечивают полноту репликации, участвуют в образовании пар хромосом во время мейоза и помогают восстанавливать внутреннюю структуру ядра на стадии интерфазы путём присоединения хромосом к ядерной мембране. Эухроматин и гетерохроматин хромосом.
ХРОМОМЕРЫ— утолщенные, плотно спирализованные участки хромосомы, расположение которых по ее длине строго специфично, что создает неповторимый рисунок хромосомы, напоминающий нитку с бусинками. Особенно хорошо он выявляется на стадии пахинемы мейоза и используется для идентификации отдельных хромосом.
Мейоз и его фазы
Мейоз(греч. meiosis – уменьшение, убывание) или редукционное деление.
В результате мейоза происходит уменьшение числа хромосом, т.е. из диплоидного набора хромосом (2п) образуется гаплоидный (п).
Мейоз состоит из 2-х последовательных делений:
I деление называется редукционное или уменьшительное.
II деление называется эквационное или уравнительное, т.е. идет по типу митоза (значит число хромосом в материнской и дочерних клетках остается прежним).
Биологический смысл мейоза заключается в том, что из одной материнской клетки с диплоидным набором хромосом образуется четыре гаплоидные клетки, таким образом количество хромосом уменьшается в два раза, а количество ДНК в четыре раза. В результате такого деления образуются половые клетки (гаметы) у животных и споры у растений.
Диакинез
Мейоз и его фазы
Мейоз(греч. meiosis – уменьшение, убывание) или редукционное деление.
В результате мейоза происходит уменьшение числа хромосом, т.е. из диплоидного набора хромосом (2п) образуется гаплоидный (п).
Мейоз состоит из 2-х последовательных делений:
I деление называется редукционное или уменьшительное.
II деление называется эквационное или уравнительное, т.е. идет по типу митоза (значит число хромосом в материнской и дочерних клетках остается прежним).
Биологический смысл мейоза заключается в том, что из одной материнской клетки с диплоидным набором хромосом образуется четыре гаплоидные клетки, таким образом количество хромосом уменьшается в два раза, а количество ДНК в четыре раза. В результате такого деления образуются половые клетки (гаметы) у животных и споры у растений.
Пахинема (пахитена, греч. толстая) – стадия толстых нитей. Идет дальнейшая спирализация хромосом. Затем каждая гомологичная хромосома расщепляется в продольном направлении и становится хорошо видно, что каждая хромосома состоит из двух хроматид такие структуры называют тетрадами, т.е. 4 хроматиды. В это время идет кроссинговер, т.е. обмен гомологичными участками хроматид.
4) Диплонема (диплотена)– стадия двойных нитей. Гомологичные хромосомы начинают отталкиваться, отходят друг от друга, но сохраняют взаимосвязь при помощи мостиков – хиазм, это места где произойдет кроссинговер. В каждом соединении хроматид (т.е. хиазме), осуществляется обмен участками хроматид. Хромосомы спирализуются и укорачиваются.
5) Диакинез –стадия обособленных двойных нитей. На этой стадии хромосомы полностью уплотнены и интенсивно окрашиваются. Ядерная оболочка и ядрышки разрушаются. Центриоли перемещаются к полюсам клетки и образуют нити веретена деления.
Таким образом, в профазу I происходит:
1.конъюгация гомологичных хромосом;
2.образование бивалентов или тетрад;
3.кроссинговер.
Межмембранное пространство
Межмембранное пространство представляет собой пространство между наружной и внутренней мембранами митохондрии. Его толщина — 10-20 нм. Так как наружная мембрана митохондрии проницаема для небольших молекул и ионов, их концентрация в периплазматическом пространстве мало отличается от таковой в цитоплазме. Напротив, крупным белкам для транспорта из цитоплазмы в периплазматическое пространство необходимо иметь специфические сигнальные пептиды; поэтому белковые компоненты периплазматического пространства и цитоплазмы различны. Одним из белков, содержащихся не только во внутренней мембране, но и в периплазматическом пространстве, является цитохром c
Внутренняя мембрана
Внутренняя мембрана состоит в основном из белковых комплексов и образует многочисленные гребневидные складки — кристы, Характерной чертой состава внутренней мембраны митохондрий является присутствие в ней кардиолипина — особого фосфолипида, содержащего сразу четыре жирные кислоты и делающего мембрану абсолютно непроницаемой для протонов. Наружная и внутренняя мембраны в некоторых местах соприкасаются, там находится специальный белок-рецептор, способствующий транспорту митохондриальных белков, закодированных в ядре, в матрикс митохондрии.
Одной из основных функций митохондрий является синтез АТФ — универсальной формы химической энергии в любой живой клетке.
В соответствии с теорией симбиогенеза, митохондрии появились в результате захвата примитивными клетками (прокариотами) бактерий. Клетки, которые не могли сами использовать кислород для генерации энергии, имели серьёзные ограничения в возможностях развития; бактерии же (прогеноты) могли это делать. В процессе развития таких отношений прогеноты передали множество своих генов сформировавшемуся, благодаря повысившейся энергоэффективности, ядру теперь уже эукариот.
Сферосомы
Это мембранные пузырьки, встречающиеся в клетках растений, они окрашиваются липофильными красителями, имеют высокий коэффициент преломления и поэтому хорошо видны в световой микроскоп. Сферосомы образуются из элементов эндоплазматического ретикулума. На конце цистерны ЭР начинает накапливаться осмиофильный материал, затем от этого участка отшнуровывается и начинает расти мелкий пузырек, достигающий диаметра 0,1-0,5 мкм. Это “просферосома”, окруженная одинарной мембраной. Рост сферосом и перестройка их содержимого связаны с накоплением в них масла, так что сферосома постепенно превращается в масляную каплю. Отложение липидов начинается между осмиофильными слоями мембраны. Кроме жиров в составе сферосом обнаруживают белки и среди них фермент липазу, расщепляющую липиды.
Пероксисомы (микротельца)
Это небольшие вакуоли (0,3-1,5 мкм), одинарной мембраной, отграничивающей гранулярный матрикс, в центре которого располагается сердцевина, или нуклеоид .В зонесердцевины часто, особенно в пероксисомах печеночных клеток, видны кристаллоподобные структуры, состоящие из регулярно упакованных фибрилл или трубочек. Изолированные сердцевины пероксисом содержат фермент уратоксидазу Пероксисомы часто локализуются вблизи мембран ЭР. Пероксисомы не содержат никаких нуклеиновых кислот и все белки, из которых они состоят, кодируются ядерными генами, но их относят к саморепродуцирующимся органеллам. В пероксидах происходит накопление специфических белков, которые синтезируются в цитозоле, и имеют свои сигнальные участки. В мембране пероксисом есть рецепторный белок, который узнает транспортируемые белки. Белки мембран пероксисом, также как и липиды приходят из цитозоля. Такое накопление содержимого и рост мембраны приводят к общему росту пероксисомы, которая затем с помощью неизвестного пока механизма делится на две – самореплицируется
Билет 3. Ультраструктурная организация и химический состав цитомембран.
Цитомембраны-внутриклеточные цитоплазматические мембраны различых типов,представляющие собой основные элементы ультраструктурной организации клеток.
Цитоплазматическая мембрана (плазмолемма, ЦПМ) – это мембрана, которая окружает цитоплазму.
Строение ЦПМ. ЦПМ имеет трехслойное строение:
- 2 ограничивающих осмиофильных слоя.
- 1 центральный осмиофобный слой. В этих слоях гидрофильные головки обращены наружу, а гидрофобные хвосты – внутрь. К гидрофильным головкам прилегают углеводородные цепи.
ЦПМ является динамической структурой с подвижными компонентами, поэтому ее представляют как мобильную текучую структуру.
Химический состав ЦПМ:
- Белки – до 75%.
- Жиры (липиды) – до 45%.
- Углеводы – до 5%.
По функции мембранные белки разделяют на:
- Структурные.
- Белки транспортных систем.
- Ферменты (энзимы).
Функции ЦПМ:
- Защитная.
- Транспортная (транспорт пит. веществ, ионов).
- Биосинтетическая (синтез белков – компонентов клеточной стенки и капсулы).
- Рецепторная (клетка бактерии обрабатывает сигналы, поступающие из окружающей среды).
- Энергетическая и дыхательная (в ней есть окислительные ферменты и др).
- Мембрана содержит особые участки для присоединения хромосомы и плазмид при их репликации и последующей сегрегации, в ней имеются центры роста мембраны.
- Также у ряда бактерий ЦПМ принимает участие в спорообразовании.
- Билет 2. Физико-химические свойства цитоплазмы.
Цитоплазма живой клетки под световым микроскопом имеет вид прозрачной слизистой полужидкой однородной массы, не обладающей никакой внутренней структурой.
В нее погружены остальные органоиды клетки. Химический состав и физические свойства цитоплазмы очень сложны. Она не является однородным химическим веществом, а представляет собой организованную и постоянно меняющуюся систему из смеси разнообразных органических соединений, которые находятся частью в коллоидном состоянии, а частью в состоянии истинного раствора. Разнообразные минеральные соли, сахара и другие воднорастворимые соединения находятся в цитоплазме в истинном растворе. Белки, нуклеиновые кислоты, липоиды (жироподобные вещества), не растворимые в воде, образуют коллоидные растворы. Коллоидное состояние важнейших органических веществ цитоплазмы резко увеличивает поверхность соприкосновения компонентов при химических реакциях, протекающих с участием ферментов, и дает возможность (при наличии мембран) осуществлять в одно и то же время различного типа реакции в отдельных участках цитоплазмы.
Таким образом, по физическим свойствам цитоплазма представляет собой многофазный коллоидный раствор. Его существование связано с большим количеством воды — дисперсионной среды коллоида. Содержание воды в деятельной цитоплазме колеблется от 60 до 90%; в цитоплазме покоящихся семян и спор воды значительно меньше (5—15%). Большое количество воды объясняется главным образом тем, что в цитоплазме постоянно происходят сложнейшие химические реакции, для осуществления которых необходимо, чтобы реагирующие соединения находились в растворе.
Предполагают, что вода может находиться в связанном состоянии с другими веществами цитоплазмы и прежде всего с белками