Основные принципы организации ОГСНКа.

КРАТКИЙ КУРС ЛЕКЦИИ

Мониторинг - система наблюдений и контроля за состоянием качества окружающей среды, состоит из трех ступеней: наблюдения, оценки состояния и прогноза возможных изменений. Мониторинг осуществляет наблюдение за антропогенными изменениями, а также за естественной, малоизмененной природной средой.

Мониторинг может охватывать как локальные районы, так и земной шар в целом (глобальный мониторинг).

Чтобы обеспечить эффективную оценку и прогноз, мониторинг должен включать наблюдения за источниками загрязнения, загрязнением природной среды и следствиями от этого загрязнения.

Наиболее универсальным подходом к определению структуры системы мониторинга антропогенных изменений является его разделение на блоки: "Наблюдения", "Оценка фактического состояния", "Прогноз состояния", "Оценка прогнозируемого состояния" (существующие геофизические службы строились по такой же схеме).

Блоки "Наблюдения" и "Прогноз состояния" тесно связаны между собой, так как прогноз состояния окружающей среды возможен лишь при наличии достаточно репрезентативной информации о фактическом состоянии (прямая связь). Построение прогноза, с одной стороны, подразумевает знание закономерностей изменений состояния природной среды, наличие схемы и возможностей численного расчета этого состояния, с другой - направленность прогноза в значительной степени должна определять структуру и состав наблюдательной сети (обратная связь).

Данные, характеризующие состояние природной среды, полученные в результате наблюдений или прогноза, должны оцениваться в зависимости от того, в какой области человеческой деятельности они используются (с помощью специально выбранных или выработанных критериев). Оценка подразумевает, с одной стороны, определение ущерба от воздействия, с другой - выбор оптимальных условий для человеческой деятельности, определение существующих экологических резервов. При такого рода оценках рассчитываются возможные значения допустимых нагрузок на окружающую природную среду.

Информационные геофизические системы, так же как и информационная система мониторинга антропогенных изменений, являются составной частью системы управления, взаимодействия человека с окружающей средой (системы управления состоянием окружающей среды), поскольку информация о существующем состоянии природной среды и тенденциях ее изменения должна быть положена в основу разработки мер по охране природы и учитываться при планировании развития экономики. Результаты оценки существующего и прогнозируемого состояния биосферы в свою очередь дают возможность уточнить требования к подсистеме наблюдений (это и составляет научное обоснование мониторинга, обоснование состава, структуры сети и методов наблюдений).

На рисунке 2 показано место мониторинга в системе управления (регулирования) состоянием окружающей природной среды. На схеме условно совмещены энергетические и информационные потоки.

Основные принципы организации ОГСНКа. - student2.ru
Рис. 2. Место мониторинга в системе управления состоянием природной среды

Элемент биосферы с уровнем состояния Б, подвергаясь воздействию (А), меняет свое состояние (Б → Б').

С помощью системы мониторинга (М) получается "фотография" этого измененного, а по возможности и первоначального состояния, производится обобщение данных, анализ и оценка фактического и прогнозируемого состояния. Эта информация передается в блок управления (У) принятия решения (см. рис. 1). На основании этой информации в зависимости от уровня научно- технических разработок (Н) и экономических возможностей (Э), с учетом эколого-экономических оценок; принимаются меры по ограничению или прекращению антропогенных воздействий, по профилактическому укреплению или последующему "лечению" элемента биосферы. Также возможна комбинация перечисленных подходов. Совершенствуется и система мониторинга (указанные действия показаны на схеме штриховыми линиями).

Следует отметить, что, поскольку оценка фактического и прогнозируемого состояния природной среды является составной частью мониторинга (см. рис. 1), то некоторые авторы идентифицируют эту часть мониторинга с элементом управления состоянием природной среды.

Наблюдения за состоянием окружающей природной среды должны включать наблюдения за источниками и факторами воздействия (в том числе источниками загрязнений, излучений и т.п.). За состоянием элементов биосферы (в том числе за откликами живых организмов на воздействие (см. рис. 3), за изменением их структурных и функциональных показателей). На рисунке также показана классификация мониторинга.



Основные принципы организации ОГСНКа. - student2.ru
Рис. 3. Схема и классификация мониторинга

В системе мониторинга различают три уровня:

- санитарно-токсический

- экологический

- биосферный

Санитарно-токсический мониторинг - наблюдение за состоянием качества окружающей cреды, главным образом за степенью загрязнения природных ресурсов вредными веществами и влиянием этого процесса на человека, животный и растительный мир, а также определение наличия физических факторов (шум,пыль), патогенных микроорганизмов, неприятных запахов, сажи, контроль за содержанием в атмосфере окислов серы и азота,СО2, соединений тяжелых металлов,качество водных объектов.

Экологический мониторинг - определение изменений в экологических системах(биогеоценозах), природных комплексах и их продуктивности, а также выявление запасов(динамика) полезных ископаемых, водных, земельных и растительных ресурсов. Экологическая ступень мониторинга не имеет единой системы учетных показателей. Степень нарушения природных комплексов, биогеоценозов, отдельных составляющих биосферу компонентов определяют путем сравнения их по ряду признаков и характеристик с ненарушенными экосистемами. Наиболее важный показатель - биологическая продуктивность биогеоценоза, единица площади суши или воды за определенный промежуторк времени.

Программа мониторинга

Импактный мониторинг

Состав и уровни концентраций загрязняющих веществ зависят от технологии производств. В данном случае физико-химические процессы в окружающей среде и метеорологические условия начинают играть существенную роль. Уровни загрязнения Среды превышают ПДКсс в десятки раз. Наблюдается тесная связь между расположением источников, их характеристиками, направлением и скоростью ветра и полями концентраций загрязняющих веществ. Наблюдения осуществляется на стационарных постах.

Региональный мониторинг

Региональный мониторинг дает возможность стыковать данные импактного и глобального фонового мониторинга, а также позволяет выявить основные пути распространения загрязняющих веществ на большие расстояния.

непосредственные сведения о состоянии загрязнения атмосферы на региональном уровне могут быть получены по данным наблюдения в небольших населенных пунктах, расположенных в дали от крупных городов, при условии, что источники загрязнения в этих пунктах отсутствуют.

Можно добавить, что значительное удаление от предприятий приводит к тому, что уровни концентраций загрязняющих веществ оказываются ближе к фоновым, обычно в пределах ПДКсс или даже ниже.

Глобальный мониторинг

Рост выбросов вредных веществ в атмосферу в результате процессов индустриализации и урбанизации ведет к увеличению содержанию примесей на значительном расстоянии от источников загрязнения и глобальным изменением в составе атмосферы, приводит к изменению климата.

Всемирной метеорологической организацией (ВМО) в 60-е годы была создана мировая сеть станций мониторинга фонового загрязнения атмосферы (БАПМоН). Ее цель состояла в получении информации о фоновых уровнях концентрации атмосферных составляющих долгопериодных изменениях, которых можно судить о человеческой деятельности.

Нарастающая острота проблемы загрязнения окружающей среды в глобальном масштабе привела к созданию в 70-е годы комитета ООН по окружающей среде (UNEP), которым было принято решение о создании Глобальной системы мониторинга окружающей среды (ГСМОС), предназначенной для наблюдения за фоновым состоянием биосферы в целом.

Станции фонового мониторинга атмосферы (станции БАПМоН) ответственны за проведение наблюдений и своевременную отправку полученных первичных данных в курирующие их управления по гидрометериологии (УГМ) и Главную геофизическую обсерваторию (ГГО) им. А. И. Воейково.

Общегосударственная система наблюдения и контроля атмосферного воздуха (ОГСНКа)

ОГСНКа- составная часть общегосударственной системы наблюдений и контроля (ОГСНК)

Задачи:

1. Наблюдение и контроль за уровнем загрязнения
окружающей среды по физическим, химическим и
гидробиологическим (для водной среды) характеристикам с целью
выявления оценки уровня загрязненности и его изменений в
пространстве и времени, выявления источников загрязнения, а
также оценки эффективности мероприятий по защите от
загрязнения.

2. Обеспечение заинтересованных организаций и учреждений
оперативной и режимной информацией об изменениях уровня
загрязнения объектов окружающей среды и о возможности его
изменения под влиянием хозяйственной деятельности и
гидрометеоусловий, а также обеспечение прогнозами о возможных
изменениях уровня загрязненности любых сред.

Состав атмосферного воздуха

Роль атмосферного воздуха в формировании планетарных процессов настолько велика, что он был первым объектом систематических наблюдений, проводимых после Стокгольмской конференции по ОС (1972 г.), в рамках системы глобального мониторинга (ГСМОС/СЕМS). Именно ГСМОС позволяет получать информацию об изменениях климата и об опасностях, связанных с нарушением функции “озонового” экрана, закономерностях функционирования биогеоценозов и т.д. Как на региональном так и на локальном уровнях необходимо систематическое наблюдение за загрязнением воздушной Среды.

В этих случаях мониторинг атмосферного воздуха рассматривают как информационную систему, служащую основой для принятия экологически значимых управленческих решений.

Давно осознано влияние качества атмосферного воздуха на здоровье и благополучие человека. Действительно, количество воздуха, проходящего в сутки через легкие человека без всякой предварительной очистки, составляет 13-15 килограммов, что 6-7 раз превышает количество потребляемой в пищу.

Атмосфера является составной частью биосферы и представляет собой газообразную оболочку Земли, вращающуюся вместе с ней как единое целое. Эта оболочка слоиста. Каждый слой имеет свое название и характерные физико-химические особенности. Условно принято атмосферу делить на две большие составные части: верхнюю и нижнюю. Наибольший интерес представляет для нас нижняя часть атмосферы, главным образом тропосфера, поскольку в ней происходят основные метеорологические явления, влияющие на загрязнение атмосферного воздуха.

В тропосфере находится большая часть космической и антропогенной пыли, водяного пара, азота, кислорода и инертных газов. Она практически прозрачна для проходящей через нее коротковолновой солнечной радиации. Вместе с тем содержащиеся в ней водяной пар, углекислота и озон (коротковолновые излучения) довольно сильно поглощают тепловое (длинноволновое) излучение нашей планеты, в результате чего тропосфера нагревается. Это нагревание является причиной вертикального перемещения потоков воздуха, конденсации водяного пара, образования облаков и выпадения осадков. Установлено, что в тропосфере температура падает на (0,5 - 0,6) °С на каждые 100 м высоты. Распределение температур в приземном слое атмосферы является важнейшей причиной формирования климата и его характеристик.

Смесь газов, составляющих атмосферу, называют воздухом, который состоит из:

- азот - 78,084%(по объему)

- кислород - 28,946%

- аргон - 0,934%

- диоксид углерода - 0,033%

- неон (Nе) - 18,18*10-4

- гелий (Не) - 5,24*10-4

- метан (СН4) - 1,3*10-4

- криптон (Кr) - 1,14*10-4

- водород (Н2) - 0,5*10-4

- оксид азота (N2О) - 0,35*10-4

- ксенон (Хе) - 0,087*10-4

- озон (О3) - 0,07*10-4

Кроме того в атмосфере всегда присутствуют взвешенные твердые и жидкие частицы как природного происхождения: морская соль - 15000 т/год, пыление почв - 750 т/год, вулканическая деятельность - 50 т/год, лесные пожары - 35 т/год, метеориты - 1 т/год.

Радиус аэрозольных частиц менее 1 мкм. Более крупные частицы - пыль.

Несмотря на свои малые размеры и невысокие концентрации аэрозольные частицы играют важную роль в формировании климата и тех рисков здоровью населения, которые всегда сопровождают человеческую деятельность. Особенно опасны радиоактивные аэрозоли. Многие реакции, в том числе и фотохимические, протекают с участием аэрозольных частиц, поверхность которых выступает как каталитическая.

Вода в атмосфере.

Процентное содержание водяного пара в воздухе колеблется от 0 до 4% объема. Но пары воды участвуют в протекании многих химических реакций в атмосфере и являются основным источником радикалов - обуславливают трансформацию многих органических и неорганических веществ в атмосфере. Наличие паров воды - обязательное условие образования атмосферных смогов. Кроме того, вода влияет на правильность пробоотбора, так и на правильность проведения ряда анализов.

Так многие вещества в следовых концентрациях сосредоточены в жидкокапельной фазе - что время пребывания этих веществ в атмосфере полностью обусловлено временем пребывания в ней воды. Среднее время пребывания воды в атмосфере - 10 суток, хотя оно может возрастать до 15 суток на полюсах и уменьшаются до 7 суток в. с. широтах.

Природные органические вещества.

Наличие животной и растительной жизни на Земле - причина присутствия в атмосфере небольших по количеству, но важных органических веществ.

Так, метан - ответственен за климатические изменения, благодаря своему парниковому эффекту. Концентрация метана в атмосфере подвержены сезонным колебаниям. Максимум - весна, осень, минимум - зима, лето. Высокое содержание метана более 5*10-4% (по объему) обнаружено в воздухе под нефтяными, газовыми, каменоугольными провинциями, под сейсмически и тектонически активными районами. Самые низкие концентрации - в воздухе высокогорных районов.

Оксиды азота

Важнейшими являются NO и NO2, поскольку остальные (N2O, N2O3, N2O4, N2O5 и пары HNO3), которые могут присутствовать в воздухе, не являются биологически значимыми.

Источники. Существуют естественные источники оксидов азота — бактериальная активность в почве, грозы, извержения вулканов. Основным антропогенным источником их являются процессы горения при температуре выше 1000°С (автотранспорт и стационарные источники).

Атмосфера. Фоновые концентрации изменяются в пределах 0,4-9,4 мкг/м3. Типичное содержание диоксида азота в воздухе городов — 20-90 мкг/м3 (среднегодовые концентрации); часовые концентрации могут достигать 240-850 мкг/м3. Вблизи заводов, производящих азотную кислоту или взрывчатые вещества или вблизи теплоэлектростанций отмечаются очень высокие концентрации.

В работе Г. С. Андрейчука и др. описаны результаты экс­перимента по исследованию перехода NOX в NO2 или N0 в ре­альной атмосфере. При выходе из дымовой трубы в атмосферу большая часть окислов азота постепенно переходит в двуокись азота. При высокой интенсивности солнечной радиации в атмо­сфере содержится меньше окиси азота, а в пасмурные дни и при моросящих осадках ее примерно па 40—50 % больше, чем дву­окиси азота.

Пути поступления в организм. Респираторный.

Влияние на окружающую среду. Оксиды азота занимают второе место после диоксида серы по вкладу в увеличение кислотности осадков. В дополнение к косвенному воздействию (кислотный дождь), длительное воздействие диоксида азота в концентрации 470-1880 мкг/м3 может подавлять рост некоторых растений (например, томатов). Значимость атмосферных эффектов оксидов азота связана с ухудшением видимости. Диоксид азота играет важную роль в образовании фотохимического смога.

В южных районах, где ин­тенсивность солнечной радиации велика, в отдельные периоды происходит резкое увеличение концентрации двуокиси азота или окиси азота в атмосфере. В периоды, когда все окислы азота пе­реходят в NO2, максимальные концентрации ее наибольшие. На­пример, в Лос-Анджелесе, Токио и Сиднее концентрации NO2 превышали 1 мг/м3.

По указанной выше причине в городах России отмечено уве­личение среднего уровня загрязнения воздуха двуокисью азота в зависимости от широты места: с севера на юг —почти на 60%

Содержание окислов азота в атмосфере зависит от наличия осадков. Во время выпадения дождя при взаимодействии с вла­гой N02 превращается в азотную кислоту, которая поступает «а почву. В районах, где осадки выпадают часто, концентрация NO2 снижается и отношение NO/NO2 возрастает.

Если принять выбросы NO2 равными выбросам NO, то полу­чается, что в атмосфере только 40 % всех окислов азота перехо­дит в NO2. . При этом вклад выбросов автотранспорта в формирование уровня за­грязнения воздуха окислами азота оказывается в 2 раза больше, чем .вклад выбросов промышленных предприятий, а окисью угле­рода— почти в 20 раз больше. Эти выводы позволяют утверждать, что основную угрозу санитарно-гигиеническому состоянию атмо­сферного воздуха городов представляют выбросы окиси углерода, двуокиси азота и окиси азота, осуществляемые автотранспортом или другими низкими источниками.

Влияние на здоровье. Оксиды азота могут отрицательно влиять на здоровье сами по себе и в комбинации с другими загрязняющими веществами. Пиковые концентрации действуют сильнее, чем интегрированная доза. Кратковременное воздействие 3000-9400 мкг/м3 диоксида азота вызывает изменения в легких. Помимо повышенной восприимчивости к респираторным инфекциям, воздействие диоксида азота может привести к повышенной чувствительности к бронхостенозу (сужение просвета бронхов) у чувствительных людей. Исследования показали, что для болеющих астмой и аналогичных больных повышается риск отрицательных легочных эффектов при содержании диоксида азота значительно меньшем, чем тот, на который не наблюдается реакция у здоровых людей.

Взвешенные частицы

Источники. Термин "взвешенные частицы" относится к ряду тонкодисперсных твердых веществ или жидкостей, диспергированных в воздухе в результате процессов горения (отопление и производство энергии), производственной деятельности и естественных источников. Размеры частиц варьируют от 0,1 до примерно 25 мкм в диаметре. Составляющие эти частицы вещества различны, но для урбанизированных территорий типичны углерод или высшие углеводороды, образующиеся при неполном сгорании топлива.В основном процессы, приводящие к образованию взвешенных частиц, — это процессы горения, осуществляемые на ТЭЦ, мусоросжигательных заводах, в бытовых печах, двигатели внутреннего сгорания, печи обжига цемента, лесные пожары, вулканическая деятельность. Частицы, образующиеся в результате сгорания, обычно имеют размер менее 1 мкм, так что они могут легко приникать в легочные альвеолы. Они также могут содержать опасные вещества, такие как асбест, тяжелые металлы, мышьяк. Оксиды металлов являются основным классом неорганических частиц в атмосфере. Они образуются в любых процессах, связанных со сжиганием топлива, содержащего металлы (главным образом уголь и нефть). До 20 % общего количества взвешенных частиц может состоять из серной кислоты и сульфатов (частицы до 1 мкм в диаметре состоят из них на 80 %) Аэрозоли состоят главным образом из углеродсодержащих частиц, оксидов металлов и силикатов, растворенных электролитов и твердых солей. Преобладающими компонентами являются углеродные частицы, вода, сульфаты, нитраты, соли аммония и соединения кремния. Состав аэрозольных частиц значительно изменяется в зависимости от размера. Очень мелкие частицы обычно являются результатом конденсации веществ из газовой фазы и имеют кислую реакцию (например, аэрозоль серной кислоты). Частицы большего размера обычно являются результатом механического измельчения материалов и часто имеют щелочную реакцию.
Дисперсионные аэрозоли, такие как пыль, образуются при измельчении частиц большего размера и обычно имеют диаметр более 1 мкм.
Для отдельных видов частиц в зависимости от размеров, формы и характерных особенностей поведения условно используют различные термины — пыль, сажа, дым, туман, дымка и пр.
Пыль — общий термин, применяемый лишь к твердым частицам. Различают оседающую пыль, т.е. частицы с размером более 10 мкм и механически устойчивые аэросуспензии с размером частиц 5–0,1 мкм.
Дымы содержат как твердые, так и жидкие частицы размером от 0,01 до 1 мкм в диаметре. Они образуются либо из веществ, улетучивающихся при высокой температуре, либо в результате химических реакций (окисления).
Туман состоит из жидких частиц диаметром 0,01–3 мкм.

В общем же химический состав взвешенных частиц в атмосфере достаточно разнообразен. Среди компонентов неорганических частиц, обнаруженных в загрязненной атмосфере, присутствуют соли, оксиды, соединения азота, серы, различные металлы и радионуклиды. Следовыми компонентами, встречающимися в количествах менее 1 мкг/м3, являются алюминий, кальций, углерод, железо, калий, натрий, кремний. Часто присутствуют также небольшие количества меди, свинца, титана и цинка, и еще более низкие содержания сурьмы, бериллия, висмута, хрома, кобальта, цезия, лития, магния, никеля, рубидия, селена, стронция и ванадия. Возможные источники этих элементов

· Al, Fe, Ca, Si — эрозия почвы, сжигание угля

· C — неполное сгорание топлива

· Sb, Se — сжигание угля, нефти или отходов

· V — сжигание нефтяного кубового остатка

· Zn — сжигание угля

· Pb — сжигание этилированного бензина и свинецсодержащих отходов.

Примерами процессов диспергирования могут быть выброс в воздух твердых побочных продуктов литейного производства, пыль, образующаяся на улицах города в результате движения транспорта, и т.д. Кроме того, аэрозоли могут образовываться в воздухе в результате фотохимических превращений атмосферных загрязнений (образование аэрозолей серной кислоты, сульфатов, нитратов).
Значительная часть органических веществ во взвешенных частицах происходит из выбросов двигателей внутреннего сгорания. Основное внимание привлекают полиядерные ароматические углеводороды.

Диоксид серы


Диоксид серы — бесцветный газ. Источники те же, что и для взвешенных частиц, особенно сжигание угля и нефти. Вступает в каталитические или фотохимические реакции с другими загрязняющими веществами с образованием SO3, серной кислоты и сульфатов. Типичные процессы образования дисперсионных аэрозолей — измельчение угля, ветровая эрозия почвы.

Атмосфера. В промышленных районах концентрация диоксида серы обычно достигает 0,05–0,1 мг/м3; в сельских районах она в несколько раз меньше, а над океаном меньше в 10–100 раз. В сельской местности фоновая концентрация близка к 0,5 мкг/м3, а концентрация в городах в 50-100 раз выше. Из-за химических превращений время жизни диоксида серы в атмосфере невелико (порядка нескольких часов). В связи с этим возможность загрязнения и опасность воздействия непосредственно диоксида серы носят, как правило, локальный, а в отдельных случаях региональный характер.

Наиболее крупными источниками выбросов двуокиси серы яв­ляются тепловые электростанции, работающие на твердом и жид­ком топливе, и металлургические предприятия. Большинство этих источников осуществляет выбросы из труб на высотах 100—200 м от поверхности земли, в результате чего они значительно рассеи­ваются до попадания в приземный слой атмосферы.

Значительную роль в загрязнении атмосферного воздуха горо­дов двуокисью серы играют такие источники, как мелкие котель­ные с низкими трубами, небольшие предприятия местной промыш­ленности, печные трубы жилых домов, т. е. источники, которых в городах насчитывается до нескольких сотен.

При одних и тех же выбросах содержание сернистого газа в атмосфере возрастает в 2 раза при увели­чении вклада низких выбросов (высота труб до 50 м) от 25 до 50 % в суммарное количество выбросов. Влияние высоты выбро­сов особенно заметно при сравнительно небольшом количестве суммарных выбросов примеси. С учетом высот всех источников выбросов в городе можно принять среднюю высоту выбросов сер­нистого газа hsoi = 25 м.

При рассмотрении соотношений между выбросами и концен­трацией вредных веществ принималось, что все выбросы серы на­ходятся в атмосфере в виде сернистого газа. В действительности в туманах и осадках очень быстро происходит его окисление до SO4 с дальнейшим образованием серной кислоты. При этом про­исходит возрастание массовой концентрации примеси: из 1 г сер­нистого газа образуется 1,5 г серной кислоты.

При низкой температуре воздуха (—35°С и ниже) выбросы тепловых электростанций и котельных способствуют образованию тумана, состоящего из частиц замерзшей влаги с высоким содер­жанием серной кислоты. Такие туманы могут возникать в поляр­ных районах, особенно на севере Восточной Сибири.

Окисление сернистого газа до SO4 и образование сульфатов происходит чаще всего в процессе фотохимических реакций. Скорость реакции окисления в значительной степени зависит от интенсивности солнечной радиации и от наличия соединений, способных изменять скорость реакции. Так, если в чистом воз­духе скорость фотохимического окисления сернистого газа состав­ляет 0,03 %/ч, то в присутствии даже незначительного количества окислов азота (а они присутствуют в атмосфере почти всегда) и олефинов она возрастает до 10 %/

В 1980 г. одновременные измерения концентраций сернистого газа и сульфатов были начаты на сети ОГСНКД во многих горо­дах, на одном посту в каждом городе. По предварительному ана­лизу результатов измерений получено, что в ат­мосфере содержание сульфатов (так же, как и сернистого газа) непрерывно изменяется. Средняя концентрация сульфатов зависит -от среднего уровня загрязнения воздуха сернистым газом и воз­растает с его увеличением.

В большинстве городов концентрация сульфатов составляет 10—25 % концентрации сернистого газа. Наибольшие концентрации сульфатов отме­чаются в районах, где велика интенсивность солнечной радиа­ции, редки осадки и создается возможность для длительного со­хранения серы в атмосфере, либо велика концентрация промыш­ленных предприятий с выбросами больших количеств серы. Более низкие концентрации сульфатов, составляющие 7—15 % концен­трации сернистого газа, наблюдаются Поволжье, и на Дальнем Востоке.

Увеличение концентрации серы за счет переноса ее из европейских стран мо­жет оказаться значительным на территории Ленинградской и Ка­лининградской областей. Сюда мо­жет переноситься в среднем за 1 год 4,1 т/км2.

Средний уровень загрязнения воздуха существенно зависит от преобладающей в городе отрасли промышленности. Такой вывод получен при рассмотрении материалов измерений, выполненных в 328 городах. В городах с предприяти­ями черной и цветной, нефтеперерабатывающей промышленности концентрации сернистого газа выше, чем в среднем по стране, и выше, чем в крупнейших городах.

Средние максимальные концентрации сернистого газа в горо­дах с предприятиями цветной металлургии выше средних макси­мальных по стране почти в 2 раза, а в городах с другими из рас­сматриваемых отраслей промышленности — выше средней макси­мальной по стране на 40—50 %..

Влияние на окружающую среду. Высокие концентрации диоксида серы вызывают серьезное повреждение растительности. Острое повреждение, вызванное диоксидом серы, отражается в появлении белесых пятен на широколистных растениях или обесцвеченных некротических полос на листьях с продольным жилкованием. Хронический эффект проявляется как обесцвечивание хлорофилла, приводящее к пожелтению листьев, появлению красной или бурой окраски, которая в нормальных условиях маскируется зеленой. Независимо от формы проявления, результатом является снижение продуктивности и замедление роста. Лишайники особенно чувствительны к SO2 и используются как биоиндикаторы при определении его избыточных количеств в воздухе. Однако диоксид серы не всегда вызывает повреждение: в сульфатдефицитных местностях дополнительные небольшие уровни SO2 могут благотворно влиять на растения, однако происходящее параллельно некоторое подкисление почвы может потребовать дополнительного известкования.

Оксид углерода (II)

Источники. Неполное сгорание органического вещества (автотранспорт, промышленность, сжигание отходов, курение и т.п.). Образуется также при протекании некоторых биологических и промышленных процессов.

Атмосфера. Естественное содержание в атмосфере 0,01–0,23 мг/м3. Концентрации в городах зависят от интенсивности движения транспорта и погодных условий и изменяются в широких пределах в зависимости от времени и расстояния от источника.

Окись углерода выбрасывается в атмосферу .предприятиями нефтяной, нефтеперерабатывающей и металлургической промышленности, крупными электростанциями. Однако в наибольших ко­личествах она поступает в атмосферу с выхлопными газами авто­мобилей. Для выбросов автомобилей примем h = 1,5 м.

При диагнозе состояния загрязнения следует учитывать фото­химические реакции в атмосфере, которые приводят не только к переходу NO в N02, но и к возникновению новых, более токсич­ных вредных веществ, чем первичные вещества, поступающие с выбросами предприятий.

Опасные условия загрязнения воздуха наблюдались при фото­химическом смоге в городах США. Леннер и др. отмечали высокие концентрации окислов азота (более 1 мг/м3) в Гётеборге. Механизм формирования смога и концентрации вредных веществ, при этом образующихся, являются предметом многих .исследова­ний. Окислители, включая озон, являются продуктами реакции окислов азота и углеводоро­дов в атмосфере.

Химические реакции, приводящие к фотохимическому смогу, сложны, а их количество велико, но главные моменты образова­ния смога описываются небольшим количеством реакций.

Влияние на здоровье. Снижает способность крови переносить кислород к тканям. Каждая млн-1 СО приводит к связыванию с 0,165 % гемоглобина крови с образованием карбоксигемоглобина. Существуют данные, что содержание карбоксигемоглобина 1-2 % влияет на поведение и может усугублять симптомы сердечно-сосудистых заболеваний (чтобы снабжение тканей кислородом оставалось на прежнем уровне, необходимо усиленное кровоснабжение). Содержание 2-5 % приводит к нарушению психомоторных функций, а более 5 % — нарушения сердечной деятельности и дыхания. Содержание карбоксигемоглобина более 10 % приводит к головной боли, утомляемости, сонливости, снижению работоспособности, коме, остановке дыхания и смерти. Принимая во внимание эти эффекты, желательно не допускать содержания карбоксигемоглобина свыше 2 %.

Тяжелые металлы

При кажущейся ясности понятия "тяжелые металлы" его значение следует определить более четко из-за встречающихся в литературе неоднозначных оценок. Термин "тяжелые металлы" связан с высокой относительной атомной массой. Эта характеристика обычно отождествляется с представлением о высокой токсичности. Одним из признаков, которые позволяют относить металлы к тяжелым, является их плотность. В современной цветной металлургии различают тяжелые цветные металлы — плотность 7,14–21,4 г/см3 (цинк, олово, медь, свинец, хром и др.) и легкие цветные металлы — плотность 0,53–3,5 г/см3 (литий, бериллий и др.).

Согласно одной классификации, к группе тяжелых металлов принадлежит более 40 элементов с высокой относительной атомной массой и относительной плотностью больше 6. По другой классификации, в эту группу включают цветные металлы с плотностью большей, чем у железа (свинец, медь, цинк, никель, кадмий, кобальт, олово, сурьма, висмут, ртуть).

Согласно сведениям, представленным в "Справочнике по элементарной химии" под ред. А.Т.Пилипенко (1977), к тяжелым металлам отнесены элементы, плотность которых более 5 г/см3. Если исходить их этого показателя, тяжелыми следует считать 43 из 84 металлов Периодической системы элементов. Среди этих 43 металлов 10 обладают наряду с металлическими свойствами признаками неметаллов (представители главных подгрупп VI, V, IV, III групп Периодической системы, являющиеся р-элементами), поэтому более строгим был бы термин "тяжелые элементы", но в данной публикации мы будем пользоваться общепринятым в литературе термином "тяжелые металлы".

Таким образом, к тяжелым металлам относят более 40 химических элементов с относительной плотностью более 6. Число же опасных загрязнителей, если учитывать токсичность, стойкость и способность накапливаться во внешней среде, а также масштабы распространения указанных металлов, значительно меньше.

Прежде всего представляют интерес те металлы, которые наиболее широко и в значительных объемах используются в производственной деятельности и в результате накопления во внешней среде представляют серьезную опасность с точки зрения их биологической активности и токсических свойств. К ним относят свинец, ртуть, кадмий, цинк, висмут, кобальт, никель, медь, олово, сурьму, ванадий, марганец, хром, молибден и мышьяк.

Биогеохимические свойства тяжелых металлов

Свойство Cd Co Cu Hg Ni Pb Zn
Биохимическая активность В В В В В В В
Токсичность В У У В У В У
Канцерогенность B B
Обогащение аэрозолей B H B B H B B
Минеральная форма распространения B B H B H B H
Органическая форма распространения B B B B B B B
Подвижность B H У В Н В У
Тенденция к биоконцентрированию В В У В В В У
Эффективность накопления В У В В У В В
Комплексообразующая способность У Н В У Н Н В
Склонность к гидролизу У Н В У У У В
Растворимость соединений В Н В В Н В В
Время жизни В В В Н В Н В

В– высокая, У — умеренная, Н — низкая

В атмосферном воздухе тяжелые металлы присутствуют в форме органических и неорганических соединений в виде пыли и аэрозолей, а также в газообразной элементной форме (ртуть). При этом аэрозоли свинца, кадмия, меди и цинка состоят преимущественно их субмикронных частиц диаметром 0,5-1 мкм, а аэрозоли никеля и кобальта — из крупнодисперсных частиц (более 1 мкм), которые образуются в основном при сжигании дизельного топлива.

Наши рекомендации