Механизм кодирования в сенсорных системах. Ограничение избыточности информации

Механизм кодирования в сенсорных системах. Ограничение избыточности информации

Особенности кодирования в сенсорных системах. В отличие от телефонных или телевизионных кодов, которые декодируются восстановлением первоначального сообщения в исходном виде, в сенсорной системе такого декодирования не происходит. Еще одна важная особенность нервного кодирования — множественность и перекрытие кодов. Так, для одного и того же свойства сигнала (например, его интенсивности) сенсорная система использует несколько кодов: частотой и числом импульсов в пачке, числом возбужденных нейронов и их локализацией в слое. В коре большого мозга сигналы кодируются последовательностью включения параллельно работающих нейронных каналов, синхронностью ритмических импульсных разрядов, изменением их числа. В коре используется также позиционное кодирование. Оно заключается в том, что какой-то признак раздражителя вызывает возбуждение определенного нейрона или небольшой группы нейронов, расположенных в определенном месте нейронного слоя. Например, возбуждение небольшой локальной группы нейронов зрительной области коры означает, что в определенной части поля зрения появилась световая полоска определенного размера и ориентации.

Для периферических отделов сенсорной системы типично временное кодирование признаков раздражителя, а на высших уровнях происходит переход к преимущественно пространственному (в основном позиционному) коду.

Детектирование сигналов. Это избирательное выделение сенсорным нейроном того или иного признака раздражителя, имеющего поведенческое значение. Такой анализ осуществляют нейроны-детекторы, избирательно реагирующие лишь на определенные параметры стимула. Так, типичный нейрон зрительной области коры отвечает разрядом лишь на одну определенную ориентацию темной или светлой полоски, расположенной в определенной части поля зрения. При других наклонах той же полоски ответят другие нейроны. В высших отделах сенсорной системы сконцентрированы детекторы сложных признаков и целых образов. Примером могут служить детекторы лица, найденные недавно в нижневисочной области коры обезьян (предсказанные много лет назад, они были названы «детекторы моей бабушки»). Многие детекторы формируются в онтогенезе под влиянием окружающей среды, а у части из них детекторные свойства заданы генетически.

Опознание образов. Это конечная и наиболее сложная операция сенсорной системы. Она заключается в отнесении образа к тому или иному классу объектов, с которыми ранее встречался организм, т. е. в классификации образов. Синтезируя сигналы от нейронов-детекторов, высший отдел сенсорной системы формирует «образ» раздражителя и сравнивает его с множеством образов, хранящихся в памяти. Опознание завершается принятием решения о том, с каким объектом или ситуацией встретился организм. В результате этого происходит восприятие, т. е. мы осознаем, чье лицо видим перед собой, кого слышим, какой запах чувствуем.

Опознание часто происходит независимо от изменчивости сигнала. Мы надежно опознаем, например, предметы при различной их освещенности, окраске, размере, ракурсе, ориентации и положении в поле зрения. Это означает, что сенсорная система формирует независимый от изменений ряда признаков сигнала (инвариантный) сенсорный образ.

Ограничение избыточности информации и выделение существенных признаков сигналов. Зрительная информация, идущая от фоторецепторов, могла бы очень быстро насытить все информационные резервы мозга. Избыточность сенсорных сообщений ограничивается путем подавления информации о менее существенных сигналах. Менее важно во внешней среде то, что неизменно либо изменяется медленно во времени и в пространстве. Например, на сетчатку глаза длительно действует большое световое пятно. Чтобы не передавать все время в мозг информацию от всех возбужденных рецепторов, сенсорная система пропускает в мозг сигналы только о начале, а затем о конце раздражения, причем до коры доходят сообщения только от рецепторов, которые лежат по контуру возбужденной области.

Кожные механорецепторы

Исследования на человеке и животных привели к хорошему пониманию физиологической функции и гистологического строения механорецепторов кожи и обнаружили между ними корреляцию. Кожа млекопитающих содержит несколько основных типов механорецепторов.

Типы низкопороговых механорецепторов кожи.

Нейрофизиологические опыты показали, что лишенная волос кожа крыс, кошек, обезьян и людей содержит три основных типа механорецепторов с афферентами группы II (Ар). Их называют рецепторами МА, БА и ТП. МА означает медленно адаптирующийся; при долговременном воздействии механического стимула (давления; например, давления веса тела на подошву) такой рецептор посылает по своему афферентному волокну непрерывный поток импульсов. БА-это быстро адаптирующийся рецептор, реагирующий только на механические стимулы, которые изменяются во времени. ТП означает тельца Пачини, гистологически выявленные структуры, функционирующие как очень быстро адаптирующиеся механорецепторы.

Нейрофизиологические исследования этих рецепторов можно проводить на наркотизированных животных или бодрствующих испытуемых-добровольцах. Регистрируются импульсы в афферентном волокне и анализируется их соотношение со специфической механической стимуляцией кожи. В опытах на животных обнажается кожный нерв (например, подошвенный нерв задней лапы), который расщепляется под препаровальной лупой до тех пор, пока во время реакции на его электрическое раздражение не станет возможным определить активность одиночного волокна. Она характеризуется потенциалами действия типа «все или ничего». У испытуемых металлический микроэлектрод с диаметром кончика около 1 мкм вводится через кожу в нерв, например в лучевой нерв около кисти. Если электрическое или естественное раздражение кожи вызывает потенциалы действия одинаковой величины, значит, регистрируется реакция его одиночного волокна.

Терморецепция

Терморецепторы расположены в коже. Терморецепторы помимо кожи имеются в некоторых внутренних органах и различных отделах ЦНС. Указанные рецепторы обеспечивают возникновение ощущения тепла и холода, а также участвуют в регуляции теплообмена. Различают два типа терморецепторов: - холодовые, - тепловые. Сюда же, хотя и с некоторой оговоркой, можно отнести два типа терморецепторов, которые дают ощущение боли при действии очень низкой или слишком высокой температуры.

Холодовых рецепторов больше, чем тепловых, к тому же лежат они более поверхностно: в эпидермисе и сразу под ним, а тепловые — в верхних и средних слоях собственно кожи. Размер поля, «обслуживаемого» терморецептором, около 1 мм2. Их плотность на различных участках кожи неодинакова: максимальная плотность обоего типа рецепторов — на коже лица. Холодовых рецепторов здесь 16-19 на 1 см, а, к примеру, на бедре они отстоят друг от друга на несколько сантиметров.

Терморецепцию осуществляют свободные нервные окончания. Тепловые относятся к немиелинизированным типа С, у которых скорость распространения нервного импульса 0,4-2 м/с. Холодовые — миелинизированные нервы А-дельта, со скоростью распространения ПД до 20 м/с. Различаются собственно тепловые рецепторы и неспецифические, возбуждающиеся от охлаждения и давления. Механизм стимуляции терморецепторов связан с изменением их метаболизма в зависимости от действия соответствующей температуры (изменение температуры на 10 °С в 2 раза меняет скорость протекания ферментативных реакций).

При длительном воздействии температурного раздражителя терморецепторы способны адаптироваться, то есть чувствительность в них постепенно понижается. К тому же необходимым условием появления соответствующего температурного ощущения является определенная скорость изменения температурного воздействия и температурный градиент. Поэтому если охлаждение происходит медленно, не более чем на 0,1ºС/с (6ºС/мин), то можно и «не заметить» обморожение. Восходящие пути от терморецепторов идут: - в ретикулярную формацию ствола головного мозга, - в вентробазальный комплекс таламуса. Из таламуса они могут поступать в соматосенсорные отделы коры.

Проприорецепция

РОПРИОРЕЦЕПЦИЯ 4.6.1. Общая характеристика. Двигательный анализатор играет важную роль в адаптации организма к изменяющимся условиям окружающей среды. В 1826 году Бенон высказал предположение, что мышечная система – не только рабочий орган, но и своеобразный орган чувств, работа которого приводит к возникновению мышечного чувства. По мнению И.М. Сеченова (1863) мышечное чувство, т.е. чувство положения тела в пространстве, возникает при активации специфических рецепторов мышечной системы. Эти рецепторы Ч. Шеррингтон назвал проприорецепторами, т.е. собственными рецепторами опорно-двигательного аппарата (лат. proprius – собственный). Проприорецепция (глубокая, или кинестетическая чувствительность) является разновидностью интерорецепции. Она представляет собой восприятие позы и движения нашего собственного тела. Поза определяется улом расположения костей в каждом суставе, устанавливаемым либо пассивно (внешними силами), либо активно (мышечным сокращением). С их работой сочетаются сигналы от вестибулярного органа, что позволяет определять положение тела в поле земного притяжения. Проприорецепторы участвуют также в нашей сознательной и бессознательной двигательной активности. Таким образом, проптиорецепторы – это группа тканевых, первичночувствующих, механорецепторов, обуславливающих поступление информации о положении тела в пространстве и о взаиморасположении частей, отделов тала относительно друг друга. Проприорецепторы располагаются в суставах, мышцах, сухожилиях и связках, надкостнице, коже. Они возбуждаются при деятельности опорно-двигательного аппарата, участвуя в анализе сигналов, поступающих от его элементов, а затем передают информацию в ЦНС. От 30 до 50% нервов, идущих к мышцам, составляют нервные волокна, несущие импульсы от проприорецепторов мышечного аппарата. Рефлексы с проприорецепторов замыкаются на различных уровнях ЦНС и обуславливают мышечный тонус, позу и координацию движений. Благодаря наличию скелетных мышц мы можем взаимодействовать с окружающей средой. Эти мышцы позволяют нам осуществлять самые разнообразные движения: бег, ходьбу, речь, письмо, мимику, жесты. Для правильного осуществления всех этих движений необходимо, чтобы в центры движения постоянно поступала информация о положении тела в пространстве, и о том, как совершается движение. Поэтому двигательный анализатор не способен к адаптации. Благодаря проприорецепции возможна коррекция, уточнение движений в соответствии с текущими потребностями выполнения произвольного действия. Вместе с другими сигналами, поступающими от вестибулярного аппарата и других органов, проприорецепция участвует в ориентации тела в пространстве, в сохранении равновесия.

Ноцицепция и боль.

В отличие от других сенсорных модальностей боль дает мало сведений об окружающем нас мире, а скорее сообщает о внешних или внутренних опасностях, грозящих нашему телу. Тем самым она защищает нас от долговременного вреда и поэтому необходима для нормальной жизни. Если бы боль нас не предостерегала, уже при самых обыденных действиях мы часто наносили бы себе повреждения и вскоре стали бы калеками.
Следовательно, боль повышает наши шансы на выживание и в этом отношении сходна с другими чувствами. По многим своим физиологическим свойствам она также полностью сравнима с ними, хотя и отличается широким спектром особенностей. Чтобы наилучшим образом помочь человеку, испытывающему боль, надо понимать эти ее специфические черты. Определение боли

Известно много попыток точно и кратко охарактеризовать боль; мы выбрали формулировку, опубликованную несколько лет назад одним международным комитетом экспертов:
«Боль - неприятное сенсорное и эмоциональное переживание, связанное с истинным или потенциальным повреждением ткани или описываемое в терминах такого повреждения».
По этому определению боль, как правило, нечто большее, чем чистое ощущение, поскольку обычно сопровождается неприятным аффективным переживанием. В определении также четко отражено, что боль ощущается тогда, когда сила стимуляции ткани тела создает опасность ее разрушения. Далее, как указано в последней части определения, хотя всякая боль связана с разрушением ткани или с риском такового, для болевого ощущения совершенно неважно, происходит ли повреждение в действительности. Таким образом, это короткое определение характеризует некоторые важные особенности боли, хотя отнюдь не все.
В следующих разделах мы сначала рассмотрим различные типы и компоненты боли и способы, какими они оцениваются и измеряются, затем обратимся к нейрофизиологии боли, некоторым патофизиологическим аспектам, а под конец обсудим эндогенные системы, контролирующие боль, и физиологические механизмы, лежащие в основе важнейших приемов ее облегчения.

Типы боли

Боль как модальность можно отнести к тому или иному типу, исходя из места ее возникновения. Первая дихотомия делит боль на соматическую и висцеральную.
Соматическая боль. Если она возникает в коже, ее называют поверхностной; если в мышцах, костях, суставах или соединительной ткани -глубокой. Таким образом, поверхностная и глубокая боль-это два (под)типа соматической боли.
Поверхностная боль, вызываемая уколом кожи булавкой, представляет собой «яркое» по характеру, легко локализуемое ощущение, которое с прекращением стимуляции быстро угасает. За этой ранней болью часто следует поздняя с латентным периодом 0,5-1,0 с. Поздняя боль по характеру тупая (ноющая), ее труднее локализовать, и она медленнее угасает; ее также легко вызвать сжатием складки кожи между пальцев.
Глубокая боль. Боль в скелетных мышцах, костях, суставах и соединительной ткани называют глубокой. Ее примеры-острые, подострые и хронические боли в суставах, одни из самых обычных у человека. Глубокая боль тупая, как правило трудно локализуемая, и имеет тенденцию к иррадиации в окружающие ткани.
Висцеральная боль. Висцеральную боль можно вызвать, например, быстрым сильным растяжением полых органов брюшной полости (скажем, мочевого пузыря или почечной лоханки). Спазмы или сильные сокращения внутренних органов тоже болезненны, особенно когда связаны с неправильным кровообращением (ишемией).

Острая боль Кроме места возникновения важный момент описания боли -ее продолжительность. Острая боль (например, от ожога кожи) обычно ограничена поврежденной областью; мы точно знаем, где она возникла, и ее сила прямо зависит от интенсивности стимуляции. Такая боль указывает на грозящее или уже происшедшее повреждение ткани и поэтому обладает четкой сигнальной и предупреждающей функцией. После устранения повреждения она быстро исчезает.

Хроническая боль

С точки зрения сенсорной физиологии, в случае хронической боли часто нет прямой связи между ее интенсивностью и степенью органического повреждения. В пределе она может становиться вообще «независимой» от лежащего в ее основе расстройства и проявляться как отдельный, индивидуальный синдром, совершенно отличный от острой боли.
Обычно хронической боли нельзя приписать какой-либо физиологической функции. В этом отношении она «бессмысленна» и ее надо облегчать. Но нельзя игнорировать тот факт, что у хронической боли бывает четкая социальная функция, которая, по крайней мере в некоторых случаях, служит противопоказанием к такому лечению (например, если оно угрожает разрушить социальную структуру, в которой живет страдающий человек).

Зуд -это еще недостаточно изученный тип кожного ощущения. Мы упоминаем его потому, что он по меньшей мере связан с болью и может быть особой ее формой, возникающей в определенных условиях стимуляции. Действительно, ряд вызывающих зуд стимулов высокой интенсивности приводит к болевым ощущениям; кроме того, блокада ноцицептивного пути в переднебоковом канатике сопровождается исчезновением зуда, тогда как при нарушениях восприятия давления и прикосновения (передаваемого в заднем столбе) он сохраняется. Показано также, что кожа ощущает его только в отдельных точках зуда, которые соответствуют болевым точкам.

Компоненты боли

Сенсорный компонент. При погружении руки в воду с температурой выше 45 °С возбуждаются но-цицепторы в коже. Их афферентные импульсы передают информацию о местонахождении горячего стимула, начале и окончании (как только руку вынимают из воды) его действия и о его интенсивности, зависящей от температуры воды. Мы осознаем эту информацию в виде ощущения, как и другие сенсорные сигналы, например, как тепло или холод при погружении руки в воду. Этот аспект боли называют ее сенсорным, или сенсорно-дискриминативным, компонентом.
Аффективный компонент. Продолжим только что рассмотренный пример. Купаясь в воде с температурой 25 °С очень жарким летним днем, мы не просто ощущаем кожей холод; одновременно он вызывает приятное чувство свежести. Однако в холодный зимний день та же вода казалась бы неприятно холодной. Иначе говоря, сенсорное ощущение может вызывать удовольствие или неудовольствие в зависимости от исходных условий и других обстоятельств. Это справедливо практически для всех сенсорных модальностей: зрения, слуха, обоняния или осязания. Боль-исключение. Вызываемые ею аффекты, или эмоции, почти исключительно неприятные; она портит наше самочувствие, мешает жить. Этот аспект боли и есть ее аффективный, или эмоциональный, компонент.
Вегетативный компонент. Погружение руки в горячую воду вызывает не только боль, но и расширение сосудов кожи, а следовательно, усиливает в ней кровоток, что заметно по ее покраснению. И напротив, погружение в ледяную воду сужает сосуды и ослабляет кровоток. В обоих случаях, как правило, повышается кровяное давление, учащается пульс, расширяются зрачки, изменяется ритм дыхания. Эти реакции на болевую стимуляцию -рефлексы вегетативной нервной системы. Иными словами, у боли есть вегетативный компонент, иногда очень сильный, особенно при висцеральной боли; например, при желчной колике он может принять форму тошноты, рвоты, потоотделения и падения кровяного давления.
Двигательный компонент. Наконец, всем известно, что, когда рука случайно прикасается к горячей воде, она отдергивается еще до того, как мы осознаем боль и принимаем решение отреагировать на нее произвольно. Этот двигательный компонент боли проявляется как рефлекс избегания или защиты во многих ситуациях. Он особенно важен в случае вредных стимулов наружного происхождения, но может быть найден даже у глубокой и висцеральной боли, например в форме мышечного напряжения. В еще более широком смысле и другие поведенческие проявления боли, возникающие вследствие ее оценки, также относятся к ее моторным, или, лучше сказать, психомоторным компонентам.
Обычно все компоненты боли возникают вместе, хотя и в разной степени. Однако их центральные проводящие пути местами совершенно раздельны, и связаны они с различными частями нервной системы. Например, сенсорный компонент имеет таламокортикальный субстрат, у аффективного в его роли выступают главным образом лимбиче-ские структуры, но также и вегетативная, и двигательная системы. Поэтому компоненты боли в принципе вполне могут возникать изолированно друг от друга. Например, спящий человек отдергивает руку от болевого стимула, даже не ощущая боли сознательно, а у децеребрированных животных наблюдаются двигательные и вегетативные реакции на нее (псевдоаффективные реакции), такие же, как у интактных животных, хотя и в отсутствие переднего мозга.

Оценка и выражение боли

В оценку боли {слабая, неприятная, беспокоящая, сильная, невыносимая) разные ее компоненты вносят неодинаковый вклад. Например, при поверхностной боли обычно преобладает сенсорный компонент, при висцеральной—вегетативный, а оценка хронической боли часто решающим образом зависит от аффективного компонента.
Главное в этой оценке -сравнение боли, испытываемой в данный момент с прошлыми видами боли, последствия которых известны. Иными словами, текущее ощущение измеряется относительно прежних, хранящихся в краткосрочной и долгосрочной памяти, и оценивается в свете накопленного опыта. Следовательно, такую оценку можно рассматривать как распознающий, т. е. когнитивный компонент боли. В зависимости от результата этого когнитивного процесса боль будет выражаться по-разному (психомоторный компонент): мимикой, стонами, просьбами дать обезболивающее средство и т. п. Когнитивное суждение, вероятно, влияет и на степень проявления аффективного и вегетативного компонентов боли, которые, таким образом, не только учитываются при ее оценке, но и в свою очередь зависят от результата последней. Мы больше страдаем от боли, которая, по нашему мнению, окажет «важное» влияние на самочувствие, чем от такой же сильной, но привычной и «безвредной».

Теории боли

Теория специфичности боли. Современные гипотезы о происхождении боли в тканях исходят из того, что это независимое ощущение со своим собственным специализированным нервным аппаратом из рецепторов, проводящих путей и центров. Согласно такому представлению, подкрепленному многими экспериментальными данными, все люди и практически все животные обладают особыми рецепторами с очень высоким порогом, которые возбуждаются только стимулами, повреждающими или грозящими повредить окружающую ткань. Рецепторы, реагирующие на такие «вредные» стимулы, названы ноцицепторами, а активируемые ими нейронные структуры ноцицептивной системой. Соответственно рецепция, проведение и центральная нервная обработка вредоносных сигналов составляют иоцицепцию; тем самым проводится грань между «объективными» нейронными процессами и «субъективным» ощущением боли.
С такой точки зрения «теория специфичности боли» становится просто теорией специфичности ноцицепции. Это лишь один пример иногда еще встречающегося смешения терминов «ноцицепция» и «боль». Однако их следует различать: ноцицептивные нейронные структуры и происходящие в них электрические и химические процессы отнюдь не эквивалентны субъективно испытываемой боли.
Одним из первых экспериментальных подтверждений теории специфичности было наблюдение: болевая чувствительность не распределена по коже равномерно; как и в случае механо- и терморецепции, болевые стимулы воспринимаются только в дискретных болевых точках. Их гораздо больше, чем точек давления. Холодовых и тепловых точек на коже еще меньше, чем последних. Уже по этой причине представлялось вероятным, что ноцицепция обслуживается особыми, специализированными ноцицепторами, а не механо- и терморецепторами, как требовали бы описанные ниже теории интенсивности и распределения импульсов.

Вкусовая сенсорная система.

Вкусовая сенсорная система — сенсорная система, при помощи которой воспринимаются вкусовые раздражения.

Вкусовые органы — периферическая часть вкусового анализатора, состоящая из особых чувствительных клеток. У большинства беспозвоночных вкусовые органы и органы обоняния ещё не разделены и являются органами общего химического чувства — вкуса и обоняния. Вкусовые органы насекомых представлены особыми хитиновыми волосками — сенсиллами, расположенными на ротовых придатках, в полости рта и др. В состав волоска входят опорные клетки, они окружают рецепторные клетки, дающие 2 тонких отростка — периферический, снабжённый видоизменённой ресничкой, которая заканчивается в области поры и непосредственно соприкасается со вкусовыми веществами, и центральный, идущий в центральную нервную систему. У низших позвоночных, например рыб, вкусовые органы могут располагаться по всему телу, но в особенности на губах, усиках, в ротовой полости, на жаберных дужках. У земноводных вкусовые органы находятся только в ротовой полости и отчасти в носовой. У млекопитающих животных и человека вкусовые органы помещаются главным образом на сосочках языка и отчасти на мягком нёбе и задней стенке глотки. Наибольшего развития вкусовые органы достигают у животных, медленно и хорошо пережёвывающих пищу. Имеется несколько типов сосочков, образуемых слизистой оболочкой языка. Желобоватые сосочки, в каждом из которых от 300 до 5000 вкусовых луковиц, располагаются 2 симметричными рядами, сходящимися к корню языка. Листовидные сосочки располагаются по одному с каждой стороны языка. Эти два типа сосочков снабжены слизистыми железами, секрет которых способствует растворению твёрдой пищи, обусловливая химическое воздействие её на вкусовые органы. На кончике и спинке языка располагаются 350—400 грибовидных сосочков, в каждом из которых имеются 2—3 вкусовых органа. У всех позвоночных вкусовые органы овальной формы находятся в толще многослойного эпителия слизистой оболочки, с поверхностью которой они сообщаются коротким вкусовым каналом. Каждый вкусовой орган состоит из 10—15 рецепторных и нескольких опорных клеток. От клеток, образующих дно вкусового канала, отходят слабо исчерченные конические «вкусовые кисточки», которые, разветвляясь, отдают 30—40 микроворсинок, выстилающих дно вкусовой ямки. Просвет между вкусовыми кисточками заполнен богатым аминокислотами и мукополисахаридами веществом — так называемыми штифтиками. Во вкусовых органах обнаружены белок, способный образовывать специфические комплексы с сахарами, и ферменты, меняющие активность под влиянием вкусовых веществ. На этом основано предположение, что вкусовые вещества, продиффундировав через штифтики и вступив в контакт с вкусовыми кисточками, соединяются с молекулами особых «вкусовых» белков, что и лежит в основе возбуждения рецепторной клетки, передающегося по вкусовому нерву в центральную нервную систему. К основаниям вкусовых клеток подходят, образуя здесь синапсы, нервные окончания вкусового нерва. Область синапсов отличается высокой активностью ацетилхолинэстеразы, что свидетельствует о холинергическом механизме передачи возбуждения вкусовой клетки в центральную нервную систему.Вкусовые волокна лицевого нерва начинаются во вкусовых органах передних двух третей языка. Они идут сначала в составе язычного нерва, затем вступают в барабанную струну, с которой и входят в лицевой нерв. Волокна, иннервирующие вкусовые органы задней трети языка, нёба и надгортанника, начинаются от клеток каменистого узла языкоглоточного нерва. Иннервирующие вкусовые органы волокна блуждающего нерва возникают в клетках его чувствительных узлов и проходят в продолговатый мозг, заканчиваясь, как и другие вкусовые волокна, в ядре одиночного пучка. Восходящие пути из ядра одиночного пучка переходят через медиальную петлю в зрительный бугор, откуда берут начало волокна, оканчивающиеся в корковом центре вкуса.

10.

Запах (odor) — свойство того или иного вещества вызвать специфическое ощущение при воздействии на рецепторы обонятельного анализатора.Рецепторы обонятельного анализатора расположены у человека в области верхних носовых ходов. Общее число обонятельных рецепторов у человека — около 10 млн. Запах имеет сложную химическую структуру, а каждый обонятельный рецептор распознаёт только свою определённую часть запаха, посылая в мозг соответствующий сигнал. То есть в распознавании одного запаха участвуют тысячи рецепторов. И только мозг объединяет разрозненные сигналы в целую картинку, благодаря чему человек в состоянии проводить кодировку запахов для их опознания, описывать новые, не существующие в природе запахи.Адаптация в обонятельном рецепторе происходит сравнительно медленно (десятки секунд или минуты) и зависит от скорости потока воздуха над обонятельным эпителием и концентрации пахучего вещества.Чувствительность обонятельного анализатора человека чрезвычайно велика: один обонятельный рецептор может быть возбуждён одной молекулой пахучего вещества. В то же время изменение концентрации пахучего вещества (порог различения) оценивается людьми довольно грубо — наименьшее воспринимаемое различие в силе запаха составляет 30-60% от его исходной концентрации. У собак эти показатели в 3-6 раз меньше.

В силу тех или причин человек может потерять обоняние (аносмия):

  • Респираторная аносмия обусловлена нарушением носового дыхания, когда возникает препятствие попаданию струи воздуха, содержащей пахучие вещества в обонятельную область (искривление носовой перегородки, полипы или опухоли носа, отёчность слизистой оболочки, ринит). Функции всех элементов обонятельного анализатора при этом сохранены.
  • Аносмия центральная (внутримозговая) развивается при заболеваниях центральной нервной системы (опухоль мозга, нарушение мозгового кровообращения). При одностороннем поражении головного мозга аносмия наблюдается на стороне поражения.
  • Аносмия эссенциальная обусловлена поражением периферического отдела обонятельного анализатора. Чаще всего возникает при распространении воспаления слизистой оболочки носа на обонятельную область. Смазывание полости носа прижигающими жидкостями также может привести к разрушению концевых разветвлений обонятельного нерва. Старческая аносмия формируется у лиц престарелого возраста и вызвана атрофией слизистой оболочки носа.

Человек может появиться на свет с врождённой аносмией — синдром Кальмана (аплазия периферического отдела обонятельного анализатора, евнухоидизм вследствие недостатка АКТГ).При аносмии исчезает вкус пищи, т.к. обоняние принимает большое участие в ощущении вкуса.К расстройствам обоняния также относят извращённое обоняние (какосмия), когда пациент воспринимает запахи преимущественно неприятного свойства — сероводорода, чеснока, гнили и пр. Извращённые обонятельные ощущения, воспринимаемые иначе по сравнению со здоровыми людьми, относят к обонятельным галлюцинациям. Какосмия нередко наблюдается при психических расстройствах, у беременных и женщин в климактерическом периоде, при заболеваниях центральной нервной системы (опухоли).

11.Физиология слуха. Особенности передачи звуковых колебаний. Электрические явления в улитке

В учении о физиологии слуха наиболее важными моментами являются вопросы о том, как достигают звуковые колебания чувствительных клеток слухового аппарата и как происходит процесс восприятия звука.
Устройство органа слуха обеспечивает передачу и восприятие звуковых раздражений. Как уже сказано, всю систему органа слуха принято делить на звукопроводящую и звуковоспринимающую часть. К первой относится наружное и среднее ухо, а также жидкие среды внутреннего уха. Вторая часть представлена нервными образованиями кортиева органа, слуховыми проводниками и центрами.
Имеются основания считать, что ушная раковина способствует улавливанию звуков, а слуховой проход улучшает проведение звука.
Звуковые волны, достигнув через слуховой проход барабанной перепонки, приводят ее в движение. Последняя так устроена, что резонирует на определенные колебания воздуха и имеет свой собственный период колебаний (около 800 гц).
Свойство резонанса заключается в том, что резонирующее тело приходит в вынужденное колебание избирательно на некоторые частоты или даже на одну частоту.
При передаче звука через систему косточек энергия звуковых колебаний увеличивается. Рычажная система слуховых косточек, уменьшая размахи колебаний в 2 раза, соответственно усиливает давление на овальное окно. А так как барабанная перепонка примерно в 25 раз больше поверхности овального окна, то сила звука при достижении овального окна увеличена в 2х25 = 50 раз. При передаче с овального окна на жидкости лабиринта амплитуда колебаний уменьшается в 20 раз, и во столько же раз увеличивается давление звуковой волны. Общее увеличение звукового давления в системе среднего уха достигает 1000 раз (2х25х20).
Согласно современным представлениям, физиологическое значение мышц барабанной полости заключается в улучшении передачи звуковых колебаний в лабиринт. При изменении степени напряжения мышц барабанной полости изменяется степень напряжения барабанной перепонки. Расслабление барабанной перепонки улучшает восприятие редких колебаний, а увеличение напряжения ее улучшает восприятие частых колебаний. Перестраиваясь под влиянием звуковых раздражений, мышцы среднего уха улучшают восприятие звуков, различных по частоте и силе.

По своему действию m. tensor tympani и m. stapedius являются антагонистами. При сокращении m. tensor tympani вся система косточек смещается внутрь и стремечко вдавливается в овальное окно. В результате этого повышается внутри лабиринтное давление и ухудшается передача низких и слабых звуков. Сокращение m. stapedius производит обратное перемещение подвижных образований среднего уха. Это ограничивает передачу слишком сильных и высоких звуков, но облегчает передачу низких и слабых.
Полагают, что при действии очень сильных звуков обе мышцы приходят в тетаническое сокращение и этим ослабляют воздействие мощных звуков.
Звуковые колебания, пройдя систему среднего уха, вызывают вдавление пластинки стремени внутрь. Далее колебания передаются по жидким средам лабиринта до кортиева органа. Здесь происходит превращение механической энергии звука в физиологический процесс.
В анатомическом строении кортиева органа, напоминающего устройство рояля, вся основная мембрана на протяжении 272 завитков улитки содержит поперечную исчерченность за счет большого количества соединительнотканных тяжей, натянутых в виде струн. Полагают, что такая деталь кортиева органа обеспечивает возбуждение рецепторов звуками разной частоты.
Высказываются предположения, что колебания основной мембраны, на которой расположен кортиев орган, приводят в соприкосновение волоски чувствительных клеток кортиева органа с покровной мембраной и в процессе этого контакта возникают слуховые импульсы, которые по проводникам передаются в центры слуха, где и возникает слуховое ощущение.
Процесс превращения механической энергии звука в нервную энергию, связанную с возбуждением рецепторных аппаратов, не изучен. Удалось более или менее детально определить электрический компонент этого процесса. Установлено, что при действии адекватного раздражителя в чувствительных окончаниях рецепторных образований возникают местные электроотрицательные потенциалы, которые, достигнув определенной силы, передаются по проводникам к слуховым центрам в виде двухфазных электрических волн. Импульсы, поступающие в кору головного мозга, вызывают возбуждение нервных центров, связанные с электроотрицательным потенциалом. Хотя электрические явления не раскрывают всей полноты физиологических процессов возбуждения, все же они обнаруживают некоторые закономерности его развития.
Купфер дает следующее объяснение возникновению электрического тока в улитке: в результате звукового раздражения поверхностно расположенные коллоидные частицы лабиринтной жидкости заряжаются положительным электричеством, а на волосковых клетках кортиева органа возникает отрицательное электричество. Эта разность потенциалов дает ток, который передается по проводникам.
По мнению В. Ф. Ундрица, механическая энергия давления звука в кортиевом органе переходит в электрическую энергию. До сих пор речь шла об истинных токах действия, возникающих в рецепторном аппарате и передающихся через слуховой нерв к центрам. Уивером и Бреем обнаружены в улитке электрические потенциалы, являющиеся отражением происходящих в ней механических колебаний. Как известно, авторы, накладывая электроды на слуховой нерв кошки, наблюдали электрические потенциалы, соответствующие частоте раздражаемого звука. Вначале было высказано предположение, что обнаруженные ими электрические явления есть истинные нервные токи действия. Да

Наши рекомендации