Введение в теорию электричества
Всякое вещество состоит из атомов — основных кирпичиков природы. Раньше думали, что атомы неделимы, однако теперь мы знаем, что они в свою очередь состоят из протонов, электронов и нейтронов. Электрический заряд — фундаментальное свойство протонов (положительно заряженных частиц) и электронов (отрицательно заряженных частиц). Под действием различных сил электроны могут отрываться от атомов. Трение, давление, свет, теплота, химические агенты, магнетизм — все эти факторы вызывают перемещение «свободных» электронов.
Мы все знакомы с многочисленными примерами таких процессов. При хождении по ковру (трение) происходит накопление электрического заряда, который с вашего тела может перейти на ручку двери или другой хороший проводник. Давление на некоторые кристаллические вещества тоже создает электрический заряд; этот принцип используется в одной из систем микрофонов. В химических батареях используется тот факт, что некоторые вещества легко отдают электроны, а другие — легко их присоединяют.
Электрический ток — это просто поток электронов в какомто материале. Некоторые материалы пропускают этот поток гораздо легче, чем другие, что зависит от их структуры и от того, насколько прочно связаны электроны с их атомами. Если электроны легко отрываются и свободно проходят через данное вещество, говорят, что это вещество — хороший проводник. Большинство металлов — хорошие проводники электричества. Электрические провода обычно делают из меди, так как она относительно дешева и хорошо пропускает поток электронов. Изоляторы — это вещества, не пропускающие потока электронов. Такова, например, резина — сложное вещество с очень прочно связанными электронами. Большая часть электрических проводов изолирована резиной; если вы их касаетесь, электроны не проходят через вас и не взаимодействуют с вашими собственными электрохимическими цепями.
Пожалуй, полезно будет представить себе простейшую электрическую цепь как нечто аналогичное току воды через трубу. У нас должен быть насос, т. е. источник мощности,
200 Приложение А. Регистрация физиологических реакций
чтобы поддерживать течение воды в такой закрытой системе. В зависимости от мощности насоса он будет оказывать на проходящую через него воду определенное давление. Если мы захотим, мы можем измерить также и ток воды, т. е. количество воды, протекающей через какое-то сечение трубы в каждую секунду
Очевидно, что ток воды будет частично зависеть от давления, которое создает насос. Оно будет также зависеть от ширины нашей трубы. Предположим, что вся труба всегда заполнена водой; тогда при повышении давления количество воды, протекающей через какой-то участок трубы, будет увеличиваться.
На скорость тока воды влияет и всякое сопротивление, которое она встречает на своем пути. Предположим, например, что мы хотим очистить протекающую по трубе воду. Первое, что мы должны для этого сделать,— это поставить на пути воды фильтр, чтобы задерживать мелкие камешки и другие примеси Теперь вода встречает некоторое сопротивление, и скорость ее тока уменьшится. Таким образом, в этом более сложном примере ток зависит и от давления, создаваемого насосом, и от сопротивления, которое встречается на пути.
Теперь вернемся к электричеству. Вспомним, что электри ческий ток — это просто поток электронов. Если мы заменим насос батареей, а трубу — куском провода, у нас будет замкнутая электрическая цепь. Какой-то участок провода мы можем заменить куском вещества, относительно плохо прово дящим электрический ток,— обычно каким-нибудь соединением углерода; тогда наша электрическая цепь будет разомкнута. «Давление», которое оказывает батарея, называется ее электродвижущей силой или напряжением. Электроны идут от отрицательного полюса батареи к положительному. Сила тока, т. е. величина потока электронов, опять-таки определяется напряжением («давлением») и сопротивлением току. Связь между этими величинами выражает закон Ома, который в простой форме можно записать так:
Приложение А. Регистрация физиологических реакций 201
Таким образом, если мы знаем силу тока и напряжение в цепи, мы можем легко, используя закон Ома, вычислить сопротивление. Или же, если мы знаем напряжение в вольтах и сопротивление в омах, мы можем вычислить ток в амперах. Электрическое сопротивление выражается в условных единицах, называемых омами.
Мы можем говорить также о проводимости материала.
Материал, который сопротивляется потоку электронов,— это относительно плохой проводник. По определению, проводимость — величина, обратная сопротивлению, т. е.
Таким образом, сопротивление 10 Ом — это проводимость 0,1 мо; а сопротивление 200 Ом — это проводимость 0,005 мо. С ростом сопротивления проводимость падает, а при снижении сопротивления проводимость возрастает. Любое сопротивление может быть выражено как проводимость.
За 1 ампер принимают такую силу тока, при которой через данную точку проходит 6,24 • 1018 электронов в секунду. В психофизиологических лабораториях редко производят прямое измерение тока. Обычно непосредственно измеряют напряжение
т. е. разность потенциалов между двумя полюсами источника электрической энергии. Обычно психофизиологические переменные измеряются милливольтами (1 мВ — одна тысячная доля вольта) или микровольтами (1 мкВ — одна миллионная доля вольта).
Все сказанное выше можно резюмировать следующим образом. Электричество — это поток электронов; для того чтобы электроны перемещались, необходим источник мощности в виде разности потенциалов в замкнутой цепи. Основные электрические переменные связаны между собой законом Ома: Напряжение = Сила тока X Сопротивление.
Электронные фильтры
Основной принцип работы электронных фильтров — это изменение частотных характеристик электрических сигналов. Источники питания могут давать ток двух типов: постоянный, при котором электроны идут в одном направлении, и переменный, при котором направление потока электронов периодически меняется на обратное. Если мы представим графически, что происходит, когда мы включаем лампу-вспышку (постоянный ток), то это будет примерно следующее:
202 Приложение А. Регистрация физиологических реакций
Когда лампа включена, в электрической цепи создается разность потенциалов в 3 вольта. Однако бытовой электрический ток (переменный) выглядит следующим образом:
Направление потока электронов периодически меняется на обратное. В США в бытовой электросети используется обычно ток частотой 60 Гц (за 1 секунду напряжение 60 раз изменяется от +110 до —110 и снова до +110, т. е. направление тока электронов меняется на обратное 120 раз в секунду). В других странах нередко используется частота 50 Гц.
При регистрации некоторых физиологических сигналов используются сходные принципы усиления постоянного и переменного тока. Это может быть источником путаницы для тех, кто не знаком с особенностями работы на полиграфе. При записи ЭЭГ нас значительно больше интересует частота изменения направления тока, чем сама величина разности потенциалов. В полиграфах некоторых типов имеются предусилители типа «DC» (постоянный ток), позволяющие измерять истинную разность потенциалов между двумя точками, и другие предусилители — типа «АС» (переменный ток, но не такой, как в сети), которые устроены так, что в них теряется информация о разности потенциалов, но точно передается частота, с которой изменяется направление тока. Эти предусилители позволяют нам далее отфильтровывать (т. е. исключать) неко-
торые частоты.
Применение фильтров трудно объяснить абстрактно, но его легко понять из рис. А.1. Здесь представлена полученная с помощью полиграфа запись ЭКГ, отражающей сокращение сердечной мышцы. Чтобы проиллюстрировать влияние фильтров, этот электрический сигнал усиливали одновременно на трех разных предусилителях. Психофизиологу часто нужно знать только частоту сердечных сокращений (которым на записи соответствуют пики). В первой записи фильтры подобраны таким образом, чтобы подчеркнуть некоторые другие особенности формы ЭКГ. Это может представлять особый интерес для психофизиолога, которого интересует не только насосная функция сердца.
Приложение А. Регистрация физиологических реакций 203
Рис. А.1. ЭКГ, записанная с применением фильтров трех типов. Один и тот же электрический сигнал зарегистрирован одновременно с помощью разных усилителей полиграфа Grass Model 7. Верхняя Запись: усиление 1/2, низкая частота, 1Гц; усиление 1/2, высокая частота, 15 Гц. Средняя запись: усиление 1/2, низкая частота, 10 Гц; усиление 1/2, высокая частота, 75 Гц. Нижняя запись: усиление 1/2, низкая частота, 1 Гц; усиление 1/2, высокая частота, 75 Гц. Обычно ЭКГ записывают так, как она представлена внизу.
Таким образом, используя электронные фильтры, исследователь может сосредоточить внимание на специфических чертах сложного электрического сигнала, подобно тому как на групповой фотографии человек может рассмотреть какое-то одно знакомое лицо. Влияние тех или иных фильтров на сложную форму физиологических колебаний предсказать трудно, поэтому фильтры часто подбирают методом проб и ошибок.
Скорость движения бумаги
Один и тот же электрический сигнал может выглядеть совсем по-разному, если его записывать при разной скорости движения бумажной ленты полиграфа. Большая скорость позволяет видеть характерные для данной волны особенности более подробно, однако при этом есть риск утратить восприятие целостной картины. На рис. А.2 показаны записи ЭКГ одного и того же человека, сделанные с разными скоростями. Выбор скорости движения бумаги зависит от цели экспериментов. Верхняя запись сделана со скоростью 5 мм/с, обычно применяемой в психофизиологических исследованиях. Экспериментатор, интересующийся тонкими изменениями ЭКГ, Должен использовать большие скорости. Для тех же, кто изучает только медленные изменения потенциала потовых желез, достаточны меньшие скорости.
204 Приложение А. Регистрация физиологических реакций
Рис. А.2. ЭКГ одного и того же испытуемого, зарегистрированная при четырех скоростях движения ленты.
Сверху вниз: скорости движения ленты 5, 10, 25 и 50 мм/с. Видно, что при больших скоростях движения бумаги можно получить дополнительную информацию о форме волн.
Безопасность
Современные продажные полиграфы сконструированы так, чтобы испытуемый не мог получить электрического удара. Однако исследователи-психофизиологи должны всегда быть начеку в отношении возникновения такого риска. Это особенно важно, когда используются дополнительные самодельные приспособления.
В табл. А. 1 указано действие на организм тока различной силы, приложенного к поверхности кожи. В соответствии с законом Ома сила тока, возникающая при данном напряжении, зависит от импеданса (сопротивления переменному току) тела испытуемого, а это в свою очередь определяется такими факторами, как, например, влажность кожи. Отметим, что если ток подается через электроды, введенные через кожу в глубже лежащие ткани, риск значительно возрастает.
Хотя пороги чувствительности у разных людей варьируют, при силе тока порядка 1 мА у всех появляется первое ощущение покалывания. Примерно при 5 мА это ощущение делается столь болезненным, что испытуемый может вскочить и уйти. При близком уровне силы тока начинают возбуждаться и двигательные нервы, что вызывает сокращение мышц. Где-то между 10 и 20 мА мышечные спазмы становятся столь сильными, что человек уже не может сам отключиться от источника тока. В диапазоне до 100 мА болезненность все усиливается. Непроизвольные сокращения скелетных мышц могут даже приводить к повреждениям.
Приложение А. Регистрация физиологических реакций 205
Таблица АЛ. Влияние удара переменного тока частотой 60 Гц на организм среднего человека (Bruner, 1967)
Сила тока, Л | Действие (при контакте в течение 1 с) |
0,001 0,003 0,050 0,100-0,300 | Порог чувствительности Максимальный безвредный уровень. Человек может просто прекратить контакт с проводником. Выше этого уровня происходит сокращение мышц Боль. Возможны обморок, механические повреждения. Функции сердца и дыхания продолжаются Начинается фибрилляция желудочков. Дыхательные центры остаются неповрежденными Продолжительное сокращение миокарда, за которым следует нормальный сердечный ритм Временный паралич дыхания. При большой плотности тока возникают ожоги |
При силе тока около 100 мА начинают возникать явления, угрожающие жизни, наиболее важное из которых — фибрилляция желудочков. Сердце осуществляет перекачивание крови благодаря координированному электрическому разряду в ткани миокарда. При достаточно сильном токе, приложенном извне, некоторые из волокон сердечной мышцы возбуждаются и начинают неупорядоченно сокращаться, что ведет к нарушению насосной функции. Если такое беспорядочное сокращение не прекратится в ближайшие минуты, оно может привести к смерти.
Ток силой 6 А держит сердце в состоянии длительного сокращения, т. е. действует так же, как ток силой около 20 мА на скелетную мускулатуру. Однако если длительность тока составляет лишь несколько тысячных секунды, то после этого восстанавливаются нормальные координированные сокращения сердца, обеспечивающие перекачивание крови. Этот принцип используется для устранения фибрилляции: чтобы восстановить нормальный ритм сердца, в области грудной клетки наносят сильный электрический удар.
Приложение Б. Методические замечания к главе 4
Потовая железа