Дифракция света на круглом отверстии и круглом экране.

Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Как показывает опыт, свет при определенных условиях может заходить в область геометрической тени. Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец. Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос.

Дифракционные явления были хорошо известны еще во времена Ньютона, но объяснить их на основе корпускулярной теории света оказалось невозможным. Первое качественное объяснение явления дифракции на основе волновых представлений было дано английским ученым Т. Юнгом. Независимо от него в 1818 г. французский ученый О. Френель развил количественную теорию дифракционных явлений. В основу теории Френель положил принцип Гюйгенса, дополнив его идеей об интерференции вторичных волн. Принцип Гюйгенса в его первоначальном виде позволял находить только положения волновых фронтов в последующие моменты времени, т. е. определятьнаправление распространения волны. По существу, это был принцип геометрической оптики. Гипотезу Гюйгенса об огибающей вторичных волн Френель заменил физически ясным положением, согласно которому вторичные волны, приходя в точку наблюдения, интерферируют друг с другом. Принцип Гюйгенса–Френеля также представлял собой определенную гипотезу, но последующий опыт подтвердил ее справедливость. В ряде практически важных случаев решение дифракционных задач на основе этого принципа дает достаточно хороший результат. Рис. 3.8.1 иллюстрирует принцип Гюйгенса–Френеля.

Дифракция света на круглом отверстии и круглом экране. - student2.ru
Рисунок 3.8.1. Принцип Гюйгенса–Френеля. ΔS1 и ΔS2 – элементы волнового фронта, Дифракция света на круглом отверстии и круглом экране. - student2.ru и Дифракция света на круглом отверстии и круглом экране. - student2.ru – нормали

Пусть поверхность S представляет собой положение волнового фронта в некоторый момент. В теории волн под волновым фронтом понимают поверхность, во всех точках которой колебания происходят с одним и тем же значением фазы (синфазно). В частности, волновые фронта плоской волны – это семейство параллельных плоскостей, перпендикулярных направлению распространения волны. Волновые фронта сферической волны, испускаемой точечным источником – это семейство концентрических сфер.

Для того чтобы определить колебания в некоторой точке P, вызванное волной, по Френелю нужно сначала определить колебания, вызываемые в этой точке отдельными вторичными волнами, приходящими в нее от всех элементов поверхности S (ΔS1, ΔS2 и т. д.), и затем сложить эти колебания с учетом их амплитуд и фаз. При этом следует учитывать только те элементы волновой поверхности S, которые не загораживаются каким-либо препятствием.

Рассмотрим в качестве примера простую дифракционную задачу о прохождении плоской монохроматической волны от удаленного источника через небольшое круглое отверстие радиуса R в непрозрачном экране (рис. 3.8.2).

Дифракция света на круглом отверстии и круглом экране. - student2.ru
Рисунок 3.8.2. Дифракция плоской волны на экране с круглым отверстием

Точка наблюдения P находится на оси симметрии на расстоянии L от экрана. В соответствии с принципом Гюйгенса–Френеля следует мысленно заселить волновую поверхность, совпадающую с плоскостью отверстия, вторичными источниками, волны от которых достигают точки P. В результате интерференции вторичных волн в точке P возникает некоторое результирующее колебание, квадрат амплитуды которого (интенсивность) нужно определить при заданных значениях длины волны λ, амплитуды A0 падающей волны и геометрии задачи. Для облегчения расчета Френель предложил разбить волновую поверхность падающей волны в месте расположения препятствия на кольцевые зоны (зоны Френеля) по следующему правилу: расстояние от границ соседних зон до точки P должны отличается на половину длины волны, т. е.

Дифракция света на круглом отверстии и круглом экране. - student2.ru

Если смотреть на волновую поверхность из точки P, то границы зон Френеля будут представлять собой концентрические окружности (рис. 3.8.3).

Дифракция света на круглом отверстии и круглом экране. - student2.ru
Рисунок 3.8.3. Границы зон Френеля в плоскости отверстия

Из рис. 3.8.2 легко найти радиусы ρm зон Френеля:

Дифракция света на круглом отверстии и круглом экране. - student2.ru

Так в оптике λ << L, вторым членом под корнем можно пренебречь. Количество зон Френеля, укладывающихся на отверстии, определяется его радиусом R:

Дифракция света на круглом отверстии и круглом экране. - student2.ru

Здесь m – не обязательно целое число. Результат интерференции вторичных волн в точке P зависит от числа m открытых зон Френеля. Легко показать, что все зоны имеют одинаковую площадь:

Дифракция света на круглом отверстии и круглом экране. - student2.ru

Одинаковые по площади зоны должны были бы возбуждать в точке наблюдения колебания с одинаковой амплитудой. Однако у каждой последующей зоны угол α между лучом, проведенным в точку наблюдения, и нормалью к волновой поверхности возрастает. Френель высказал предположение (подтвержденное экспериментом), что с увеличением угла α амплитуда колебаний уменьшается, хотя и незначительно:

A1 > A2 > A3 > ... > A1,

где Am – амплитуда колебаний, вызванных m-й зоной.

С хорошим приближением можно считать, что амплитуда колебаний, вызываемых некоторой зоной, равна среднему арифметическому из амплитуд колебаний, вызываемых двумя соседними зонами, т. е.

Дифракция света на круглом отверстии и круглом экране. - student2.ru

Так как расстояния от двух соседних зон до точки наблюдения отличаются на λ / 2, следовательно, возбуждаемые этими зонами колебания находится в противофазе. Поэтому волны от любых двух соседних зон почти гасят друг друга. Суммарная амплитуда в точке наблюдения есть

A = A1 – A2 + A3 – A4 + ... = A1 – (A2 – A3) – (A4 – A5) – ... < A1.

Таким образом, суммарная амплитуда колебаний в точке P всегда меньше амплитуды колебаний, которые вызвала бы одна первая зона Френеля. В частности, если бы были открыты все зоны Френеля, то до точки наблюдения дошла бы невозмущенная препятствием волна с амплитудой A0. В этом случае можно записать:

Дифракция света на круглом отверстии и круглом экране. - student2.ru

так как выражения, стоящие в скобках, равны нулю. Следовательно, действие (амплитуда), вызванное всем волновым фронтом, равно половине действия одной первой зоны.

Итак, если отверстие в непрозрачном экране оставляет открытой только одну зону Френеля, то амплитуда колебаний в точке наблюдения возрастает в 2 раза (а интенсивность – в 4 раза) по сравнению с действием невозмущенной волны. Если открыть две зоны, то амплитуда колебаний обращается в нуль. Если изготовить непрозрачный экран, который оставлял бы открытыми только несколько нечетных (или только несколько четных) зон, то амплитуда колебаний резко возрастет. Например, если открыты 1, 3 и 5 зоны, то

A = 6A0, I = 36I0.

Такие пластинки, обладающие свойством фокусировать свет, называются зонными пластинками.

При дифракции света на круглом диске закрытыми оказываются зоны Френеля первых номеров от 1 до m. Тогда амплитуда колебаний в точке наблюдения будет равна

Дифракция света на круглом отверстии и круглом экране. - student2.ru

или A = Am + 1 / 2, так как выражения, стоящие в скобках, равны нулю. Если диск закрывает зоны не слишком больших номеров, тоAm + 1 ≈ 2A0 и A ≈ A0, т. е. в центре картины при дифракции света на диске наблюдается интерференционный максимум. Это – так называемое пятно Пуассона, оно окружено светлыми и темными дифракционными кольцами.

Оценим размеры зон Френеля. Пусть, например, дифракционная картина наблюдается на экране, расположенном на расстоянии L = 1 м от препятствия. Длина волны света λ = 600 нм (красный свет). Тогда радиус первой зоны Френеля есть

Дифракция света на круглом отверстии и круглом экране. - student2.ru

Таким образом, в оптическом диапазоне вследствие малости длины волны размер зон Френеля оказывается достаточно малым. Дифракционные явления проявляются наиболее отчетливо, когда на препятствии укладывается лишь небольшое число зон:

Дифракция света на круглом отверстии и круглом экране. - student2.ru

Это соотношение можно рассматривать как критерий наблюдения дифракции. Если число зон Френеля, укладывающихся на препятствии, становится очень большим, дифракционные явления практически незаметны:

Дифракция света на круглом отверстии и круглом экране. - student2.ru

Это сильное неравенство определяет границу применимости геометрической оптики. Узкий пучок света, который в геометрической оптике называется лучом, может быть сформирован только при выполнении этого условия. Таким образом, геометрическая оптика является предельным случаем волновой оптики.

Выше был рассмотрен случай дифракции света от удаленного источника на препятствиях круглой формы. Если точечный источник света находится на конечном расстоянии, то на препятствие падает сферически расходящаяся волна. В этом случае геометрия задачи несколько усложняется, так как теперь зоны Френеля нужно строить не на плоской, а на сферической поверхности (рис. 3.8.4).

Дифракция света на круглом отверстии и круглом экране. - student2.ru
Рисунок 3.8.4. Зоны Френеля на сферическом фронте волны

Расчет приводит к следующему выражению для радиусов ρm зон Френеля на сферическом фронте волны:

Дифракция света на круглом отверстии и круглом экране. - student2.ru

Все выводы изложенной выше теории Френеля остаются справедливыми и в этом случае.

Следует отметить, что теория дифракции (и интерференции) световых волн применима к волнам любой физической природы. В этом проявляется общность волновых закономерностей. Физическая природа света в начале XIX века, когда Т. Юнг, О. Френель и другие ученые развивали волновые представления, еще не была известна.

10+ Дифракция света в параллельных лучах на щели. Дифракционная решётка.

Дифракция Фраунгофера — случай дифракции, при котором дифракционная картина наблюдается на значительном расстоянии от отверстия или преграды.

Дифракция света на одной щели

Пусть в непрерывном экране есть щель: ширина щели Дифракция света на круглом отверстии и круглом экране. - student2.ru , длина щели (перпендикулярно плоскости листа) Дифракция света на круглом отверстии и круглом экране. - student2.ru (рис. 9.5). На щель падают параллельные лучи света. Для облегчения расчета считаем, что в плоскости щели АВ амплитуды и фазы падающих волн одинаковы.

Дифракция света на круглом отверстии и круглом экране. - student2.ru

Рис. 9.5

Разобьем щель на зоны Френеля так, чтобы оптическая разность хода между лучами, идущими от соседних зон, была равна Дифракция света на круглом отверстии и круглом экране. - student2.ru .

Если на ширине щели укладывается четное число таких зон, то в точке Дифракция света на круглом отверстии и круглом экране. - student2.ru (побочный фокуслинзы) будет наблюдаться минимум интенсивности, а если нечетное число зон, то максимум интенсивности:

 
  Дифракция света на круглом отверстии и круглом экране. - student2.ru – условие минимума интенсивности; (9.4.1)
 
 
  Дифракция света на круглом отверстии и круглом экране. - student2.ru – условие максимума интенсивности (9.4.2)
 

Картина будет симметричной относительно главного фокуса точки Дифракция света на круглом отверстии и круглом экране. - student2.ru . Знак плюс и минус соответствует углам, отсчитанным в ту или иную сторону.

Интенсивность света Дифракция света на круглом отверстии и круглом экране. - student2.ru . Как видно из рис. 9.5, центральный максимум по интенсивности превосходит все остальные.

Рассмотрим влияние ширины щели.

Т.к. условие минимума имеет вид Дифракция света на круглом отверстии и круглом экране. - student2.ru , отсюда

 
  Дифракция света на круглом отверстии и круглом экране. - student2.ru . (9.4.3)
 

Из этой формулы видно, что с увеличением ширины щели b положения минимумов сдвигаются к центру, центральный максимум становится резче.

При уменьшении ширины щели b вся картина расширяется, расплывается, центральная полоска тоже расширяется, захватывая все большую часть экрана, а интенсивность ее уменьшается.

Дифракция света на дифракционной решетке

Одномерная дифракционная решетка представляет собой систему из большого числа Nодинаковых по ширине и параллельных друг другу щелей в экране, разделенных также одинаковыми по ширине непрозрачными промежутками (рис. 9.6).

Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т.е. в дифракционной решетке осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей.

Обозначим: b – ширина щели решетки; а – расстояние между щелями; Дифракция света на круглом отверстии и круглом экране. - student2.ru – постоянная дифракционной решетки.

Линза собирает все лучи, падающие на нее под одним углом и не вносит никакой дополнительной разности хода.

Дифракция света на круглом отверстии и круглом экране. - student2.ru Дифракция света на круглом отверстии и круглом экране. - student2.ru
Рис. 9.6 Рис. 9.7

Пусть луч 1 падает на линзу под углом φ (угол дифракции). Световая волна, идущая под этим углом от щели, создает в точке Дифракция света на круглом отверстии и круглом экране. - student2.ru максимум интенсивности. Второй луч, идущий от соседней щели под этим же углом φ, придет в ту же точку Дифракция света на круглом отверстии и круглом экране. - student2.ru . Оба эти луча придут в фазе и будут усиливать друг друга, если оптическая разность хода будет равна mλ:

Дифракция света на круглом отверстии и круглом экране. - student2.ru

Условие максимума для дифракционной решетки будет иметь вид:

 
  Дифракция света на круглом отверстии и круглом экране. - student2.ru , (9.4.4)
 

где m = ± 1, ± 2, ± 3, … .

Максимумы, соответствующие этому условию, называются главными максимумами. Значение величины m, соответствующее тому или иному максимуму называется порядком дифракционного максимума.

В точке F0 всегда будет наблюдаться нулевой или центральный дифракционный максимум.

Так как свет, падающий на экран, проходит только через щели в дифракционной решетке, то условие минимума для щели и будет условиемглавного дифракционного минимумадля решетки:

 
  Дифракция света на круглом отверстии и круглом экране. - student2.ru . (9.4.5)
 

Конечно, при большом числе щелей, в точки экрана, соответствующие главным дифракционным минимумам, от некоторых щелей свет будет попадать и там будут образовываться побочныедифракционные максимумы и минимумы (рис. 9.7). Но их интенсивность, по сравнению с главными максимумами, мала (≈ 1/22).

При условии Дифракция света на круглом отверстии и круглом экране. - student2.ru ,

волны, посылаемые каждой щелью, будут гаситься в результате интерференции и появятсядополнительные минимумы.

Количество щелей определяет световой поток через решетку. Чем их больше, тем большая энергия переносится волной через нее. Кроме того, чем больше число щелей, тем больше дополнительных минимумов помещается между соседними максимумами. Следовательно, максимумы будут более узкими и более интенсивными (рис. 9.8).

Дифракция света на круглом отверстии и круглом экране. - student2.ru

Рис. 9.8

Из (9.4.3) видно, что угол дифракции пропорционален длине волны λ. Значит, дифракционная решетка разлагает белый свет на составляющие, причем отклоняет свет с большей длиной волны (красный) на больший угол (в отличие от призмы, где все происходит наоборот).

Это свойство дифракционных решеток используется для определения спектрального состава света (дифракционные спектрографы, спектроскопы, спектрометры).

Дифракционная решётка — оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори, который использовал в качестве решётки птичьи перья.

Виды решеток:

Отражательные: Штрихи нанесены на зеркальную (металлическую) поверхность, и наблюдение ведется в отраженном свете

Прозрачные: Штрихи нанесены на прозрачную поверхность (или вырезаются в виде щелей на непрозрачном экране), наблюдение ведется в проходящем свете.

Описание явления:

Фронт световой волны разбивается штрихами решётки на отдельные пучки когерентного света. Эти пучки претерпевают дифракцию на штрихах и интерферируют друг с другом. Так как для каждой длины волны существует свой угол дифракции, то белый свет раскладывается в спектр.

Формулы:

Расстояние, через которое повторяются штрихи на решётке, называют периодом дифракционной решётки. Обозначают буквой d.

Если известно число штрихов (N), приходящихся на 1 мм решётки, то период решётки находят по формуле: d = 1 / N мм.

Условия главных дифракционных максимумов, наблюдаемых под определенными углами, имеют вид:

Дифракция света на круглом отверстии и круглом экране. - student2.ru

где

d — период решётки,

α — угол максимума данного цвета,

k — порядок максимума,

λ — длина волны.

Дифракция света на круглом отверстии и круглом экране. - student2.ru

Условие наблюдения максимума интенсивности света:

Дифракция света на круглом отверстии и круглом экране. - student2.ru

где n- порядок максимума

Условие наблюдения минимума интенсивности света:

Дифракция света на круглом отверстии и круглом экране. - student2.ru

m – порядок минимума

Наши рекомендации