Часть iii. принцип заурядности
Глава 12
Проблема космологической постоянной
Немногие теоретические оценки в истории физики... были настолько неточными.
Ларри Эббот
Кризис энергии вакуума
Вакуум — это самый загадочный объект, с которым когда-либо встречались физики. А самый страшный секрет вакуума — это происхождение его энергии. Я должен подчеркнуть, что говорю не о высокоэнергичном вакууме инфляционной космологии. Как раз физика ложного вакуума относительно понятна. Загадочный объект, о котором идет речь, — это обычный, истинный вакуум, в котором мы сейчас обитаем.
Вакуум — это то, что остается, когда мы убираем все частицы и излучение. Для классического физика это просто пустое пространство, и о нем нечего больше сказать. Но в квантовой физике вакуум — это арена безумно активной деятельности.
Возьмем, к примеру, электромагнитное излучение. Оно состоит из фотонов — небольших сгущений электромагнитной энергии. Допустим, у нас есть ящик чистого вакуума. Мы напрочь опустошили его и убедились, что внутри не осталось ни одного фотона, ни одной частицы. Можно предположить, что электрическое и магнитное поля в ящике должны быть строго равны нулю. Но это не так. Квантовый вакуум отказывается пребывать в покое. Точно так же, как скалярное поле во время инфляции, электрическое и магнитное поля испытывают случайные рывки или квантовые флуктуации.
Если вы попробуете измерить, скажем, магнитное поле внутри ящика, полученный результат будет зависеть от размера вашего измерительного устройства. Предположим, для начала вы взяли относительно крупное приспособление, измеряющее поле в масштабе 1 сантиметр. Тогда величина измеренного поля составит несколько миллиардных долей гаусса. (Для сравнения: напряженность магнитного поля Земли составляет у поверхности около 1 гаусса.) Спустя одну наносекунду[80]направление поля станет совершенно другим, но его величина останется где-то между нулем и несколькими миллиардными гаусса. Чтобы заметить эти стремительные флуктуации поля, измерения надо выполнять быстро. Если измерение занимает больше наносекунды, вы получите среднее значение поля, которое будет очень близко к нулю.
Детектор размером 1 миллиметр зарегистрирует в 10 раз более сильное поле, которое флуктуирует в 10 раз быстрее. Эти соотношения сохраняются по мере дальнейшего уменьшения масштабов: каждый раз, когда вы уменьшаете масштаб длины в 10 раз, величина флуктуации увеличивается в 100 раз, а их частота возрастает десятикратно. В масштабе атомов флуктуирующее магнитное поле в 10 миллионов гаусс меняет свое направление примерно 1017 раз в секунду.
Мы не замечаем этих колоссальных магнитных полей, потому что они очень быстро меняются от точки к точке и от мгновения к мгновению. Стрелка компаса, например, реагирует на магнитное поле, осредненное по всей ее длине, и за интервал времени, достаточный для существенного ее поворота (скажем, 0,1 секунды). Влияние квантовых флуктуации на таких масштабах совершенно ничтожно.[81]
Все это замечательно, пока мы не заинтересуемся энергией флуктуации. Плотность энергии магнитного поля зависит только от его напряженности, но не от направления. Поэтому, даже если поле колеблется в разные стороны, его плотность энергии в среднем не равна нулю. Сильные, быстро флуктуирующие поля на малых расстояниях вносят большой вклад в плотность энергии, и тут мы сталкиваемся с серьезной проблемой. По мере рассмотрения все меньших и меньших размеров плотность энергии неограниченно возрастает. В результате мы приходим к абсурдному выводу, будто плотность энергии вакуума бесконечна! Похоже, в нашей теории что-то глубоко неверно. Попробуем разобраться, что бы это могло быть и как нам обойти этот странный результат.
Бесконечность возникает, если мы допускаем, что линейный масштаб флуктуации может быть сколь угодно малым. Но ведь не исключено, что существует предел тому, насколько малыми они могут быть. На сверхмалых расстояниях геометрия пространства и времени тоже оказывается подвержена большим квантовым флуктуациям. Как и в случае электромагнетизма, чем меньше линейный масштаб, тем больше флуктуации. Ниже некоторого критического размера, называемого планковской длиной , пространство время обретает хаотическую, пенообразную структуру. Пространство неистово закручивается и сминается, крошечные "пузырьки" отрываются от него и немедленно коллапсируют, возникает и мгновенно исчезает множество "ручек" или "туннелей" (рис. 12.1). Планковская длина невероятно мала: она составляет одну миллиардно-триллионно-триллионную долю сантиметра. В значительно больших масштабах пространство выглядит гладким, а "пространственно-временная пена" не видна — подобно тому как пенная поверхность океана кажется гладкой, если смотреть на нее с большой высоты.
Рис. 12.1. Пространственно-временная пена.
Возможно, столь резкое изменение свойств пространства-времени гасит идущие вразнос электромагнитные флуктуации. Этого нельзя сказать с уверенностью, поскольку физика пространственно-временной пены не вполне ясна. Но даже при наилучшем раскладе ничто не ограничивает флуктуации в масштабах, больших, чем планковская длина. Оценка плотности энергии таких флуктуации дает поразительную величину 1088 тонн на кубический сантиметр, что намного превосходит энергию вакуума Великого объединения!
Плотность энергии истинного вакуума — это то, что Эйнштейн называл космологической постоянной. Если она действительно так невероятно велика, Вселенная должна сейчас находиться в состоянии взрывного инфляционного расширения. Однако наблюдаемый темп расширения Вселенной ограничивает величину космологической постоянной значением в 10120 (это больше гугола!) раз меньшим. Итак, мы столкнулись с загадкой: почему плотность энергии вакуума не так велика? Столь разительное несоответствие между предсказанным и наблюдаемым значениями космологической постоянной известно под названием проблемы космологической постоянной. Это одна из самых волнующих и будоражащих ум загадок в теоретической физике элементарных частиц.