Максимальное значение ЭДС индукции равно

eimax = N2BSw.

Учитывая формулу (2), получим:

Максимальное значение ЭДС индукции равно - student2.ru .

Произведя вычисления, получим:

Максимальное значение ЭДС индукции равно - student2.ru

Задача 2

Контур в виде квадрата со стороной 10 см находится в однородном магнитном поле с индукцией 0,5 мТл, причем его плоскость составляет угол 60оc силовыми линиями поля. Какой заряд протечет по контуру при выключении магнитного поля? Сопротивление контура 1 мОм.

Дано: Решение:
а = 10 см = 10-1 м В = 0,5 мТл = Максимальное значение ЭДС индукции равно - student2.ru 10-4 Тл b = 60о R = 1 мОм = Максимальное значение ЭДС индукции равно - student2.ru 10-3 Ом.     Максимальное значение ЭДС индукции равно - student2.ru Рис. 8
q = ?

При выключении магнитного поля магнитный поток Ф, пронизывающий контур, меняется. В контуре возникает ЭДС индукции, мгновенное значение которой по закону Фарадея равно

Максимальное значение ЭДС индукции равно - student2.ru .

Мгновенное значение силы индукционного тока определяется по закону Ома

Максимальное значение ЭДС индукции равно - student2.ru .

За время dt по контуру протечет заряд

Максимальное значение ЭДС индукции равно - student2.ru .

Проинтегрировав это выражение, найдем полный заряд:

Максимальное значение ЭДС индукции равно - student2.ru .

Для однородного магнитного поля начальный магнитный поток равен

Ф1 = BScosa,

где a – угол между вектором Максимальное значение ЭДС индукции равно - student2.ru и нормалью к плоскости контура (рис. 8);S = а2 – площадь контура.

Из рис. 8 видно, что a = 90о–b. Следовательно, cosa = sinb. Конечный магнитный поток Ф2 = 0.

Таким образом,

Максимальное значение ЭДС индукции равно - student2.ru .

Произведя вычисления, получим:

Максимальное значение ЭДС индукции равно - student2.ru Кл .

Проверим, дает ли расчетная формула единицу заряда. Для этого в правую часть формулы вместо символов величин подставим их единицы измерений:

Максимальное значение ЭДС индукции равно - student2.ru Но из закона Ампера Максимальное значение ЭДС индукции равно - student2.ru , а из закона Ома Максимальное значение ЭДС индукции равно - student2.ru . Таким образом, Максимальное значение ЭДС индукции равно - student2.ru .

Из определения потенциала Максимальное значение ЭДС индукции равно - student2.ru .

Задача 3

Соленоид с сердечником из немагнитного материала содержит 1200 витков провода, плотно прилегающих друг к другу. При силе тока 4 А магнитный поток равен 4 мкВб. Определить индуктивность соленоида и энергию его магнитного поля.

Дано: Решение:
N = 1200 I = 4 А Ф = 4 мкВб = Максимальное значение ЭДС индукции равно - student2.ru 10-6 Вб Индуктивность L связана с потокосцеплением Y и силой тока I соотношением Y= LI . ( 1 )  
L - ? W - ?

В свою очередь, потокосцепление можно найти через поток Ф и число витков N (когда витки плотно прилегают друг к другу):

Y= NФ . ( 2 )

Из формул (1) и (2) находим индуктивность соленоида

Максимальное значение ЭДС индукции равно - student2.ru . ( 3 )

Энергия магнитного поля соленоида

Максимальное значение ЭДС индукции равно - student2.ru .

Выразив L согласно (3), получим:

Максимальное значение ЭДС индукции равно - student2.ru .

Подставим в формулы значения физических величин и произведем вычисления

Максимальное значение ЭДС индукции равно - student2.ru

Максимальное значение ЭДС индукции равно - student2.ru Дж = 14,4 мДж.

Проверим размерность для энергии магнитного поля

Максимальное значение ЭДС индукции равно - student2.ru

Из выражения для силы Ампера F = Максимальное значение ЭДС индукции равно - student2.ru получим:

Максимальное значение ЭДС индукции равно - student2.ru , т. е. Тл = Максимальное значение ЭДС индукции равно - student2.ru .

Таким образом, Максимальное значение ЭДС индукции равно - student2.ru

Задание на контрольную работу № 3

301. Три одинаковых точечных заряда 50 нКл находятся в вершинах равностороннего треугольника со стороной 6 см. Найти силу, действующую на один из зарядов со стороны двух остальных.

302. На продолжении оси тонкого прямого стержня, равномерно заряженного с линейной плотностью заряда 400 нКл/см, на расстоянии 30 см от конца стержня, находится точечный заряд 20 мкКл. Второй конец стержня уходит в бесконечность. Определить силу взаимодействия стержня и точечного заряда.

303. Четыре одинаковых точечных заряда 20 нКл закреплены в вершинах квадрата со стороной 10 см. Найти силу, действующую на один из этих зарядов со стороны трех остальных.

304. На продолжении оси тонкого прямого равномерно заряженного стержня длиной 20 см на расстоянии 10 см от его ближайшего конца находится точечный заряд 10 нКл. Определить линейную плотность заряда на стержне, если сила взаимодействия стержня и точечного заряда 6 мкН.

305. Поверхностная плотность заряда бесконечно протяженной верти-кальной плоскости 200 мкКл/м2. К плоскости на нити подвешен заряженный шарик массой 15 г. Определить заряд шарика, если нить образует с плоскостью угол 30о.

306. Две длинные прямые параллельные нити находятся на расстоянии 10 cм друг от друга. На нитях равномерно распределены заряды с линейными плотностями 0,4 и –0,3 нКл/см. Определить напряженность электрического поля в точке, удаленной от первой нити на расстояние 6 см и от второй – на расстояние 8 см.

307. В вершинах правильного шестиугольника со стороной 10 см на-ходятся одинаковые точечные заряды величиной 5 нКл. Найти напряженность и потенциал электростатического поля в центре шестиугольника.

308. Определить напряженность и потенциал электростатического поля, создаваемого зарядом – 3 нКл, равномерно распределенным по тонкому прямому стержню длиной 10 см, в точке, лежащей на продолжении оси стержня на расстоянии 10 см от его конца.

309. Две концентрические металлические заряженные сферы радиусами 5 и 10 см несут соответственно заряды 3 и –1нКл. Найти напряженность и потенциал электростатического поля в точках, лежащих от центра сфер на расстояниях 3, 6 и 12 см. Построить график зависимости напряженности и потенциала от расстояния.

310. Два точечных заряда величиной 1 и –1 нКл находятся на расстоянии 2 см друг от друга. Определить напряженность и потенциал электростатичес-кого поля в точке, удаленной от первого и второго заряда на расстояние 3 см.

311. Электростатическое поле создается двумя бесконечными парал-лельными плоскостями, равномерно заряженными с поверхностными плотностями заряда 0,3 и 0,7 мкКл/м2. Определить напряженность поля между пластинами и вне пластин. Найти разность потенциалов между пластинами, если расстояние между ними 4 см. Построить график изменения напряженности вдоль линии, перпендикулярной пластинам.

312. Решить предыдущую задачу при условии, что заряд второй пластины отрицательный.

313. На расстоянии 2 см от бесконечно длинной равномерно заряженной нити находится точечный заряд 0,4 нКл. Под действием сил поля заряд переместился до расстояния 4 см; при этом совершается работа 0,5 мкДж. Найти линейную плотность заряда нити.

314. Определить работу сил электростатического поля при перемещении точечного заряда –20 нКл из бесконечности в точку, находящуюся на расстоянии 4 см от поверхности сферы радиусом 1 см, равномерно заряженной с поверхностной плотностью заряда 3 нКл/см2.

315. Под действием сил электростатического поля точечный заряд переместился из точки, находящейся на расстоянии 8 см от бесконечно длинной равномерно заряженной нити в точку, находящуюся на расстоянии 2 см; при этом совершается работа 52 мкДж. Найти величину заряда, если линейная плотность заряда нити 50 нКл/см.

316. Протон влетел в однородное электрическое поле с напряженностью 300 В/см в направлении силовых линий со скоростью 100 км/с. Какой путь должен пройти протон, чтобы его скорость удвоилась?

317. В центре сферы радиусом 30 см находится точечный заряд 10 нКл. Определить поток напряженности через часть сферической поверхности площадью 20 см2.

318. Прямоугольная плоская площадка со сторонами 3 и 2 см находится на расстоянии 1 м от точечного заряда 2 мкКл. Площадка ориентирована так, что линии напряженности составляют угол 30о с ее поверхностью. Найти поток напряженности через эту площадку.

319. На некотором расстоянии от бесконечной равномерно заряженной плоскости с поверхностной плотностью заряда 0,5 нКл /см2 расположена круглая пластинка так, что её плоскость составляет угол 30ос силовыми линиями электрического поля. Определить поток напряженности и электрического смещения (индукции) через пластинку, если её радиус 10 см.

320. Бесконечная плоскость, равномерно заряженная с поверхностной плотностью заряда 5 нКл/см2, пересекает сферу по диаметру. Найти поток электрического смещения через сферическую поверхность, если диаметр сферы 4 см.

321. Конденсатор электроёмкостью 0,5 мкФ был заряжен до напряжения 350 В. После того как его соединили параллельно со вторым конденсатором, заряженным до напряжения 500 В, напряжение на нем изменилось до 400 В. Вычислить электроемкость второго конденсатора.

322. Коаксиальный электрический кабель состоит из центральной жилы радиусом 1 см и цилиндрической оболочки радиусом 1,5 см, между которыми находится изоляция. Вывести формулу для емкости такого кабеля и вычислить электроемкость кабеля длиной 10 м, если изоляционным материалом служит резина.

323. Сферический конденсатор состоит из двух тонких концентрических сферических оболочек радиусом 1,5 и 3 см. В пространстве между оболочками находится диэлектрик с диэлектрической проницаемостью 3,2. Вывести формулу для электроёмкости такого конденсатора и вычислить его электроемкость.

324. Определить поверхностную плотность зарядов на пластинах плоского слюдяного конденсатора, заряженного до разности потенциалов 100 В, если расстояние между его пластинами 0,3 мм.

325. Плоский воздушный конденсатор с площадью пластин 100 см2 заряжен до разности потенциалов 300 В. Определить поверхностную плотность заряда на пластинах, электроёмкость и энергию поля конденсатора, если напряженность поля в зазоре между пластинами 60 кВ/м.

326. Плоский слюдяной конденсатор, заряженный до разности потенциалов 600 В, обладает энергией 40 мкДж. Площадь пластин составляет 100 см2. Определить расстояние между пластинами, напряженность и объёмную плотность энергии электрического поля конденсатора.

327. Плоский конденсатор заряжен до разности потенциалов 300 В. Расстояние между пластинами 5 мм, диэлектрик – стекло. Определить напряженность поля в стекле, поверхностную плотность заряда на пластинах и поверхностную плотность связанных поляризационных зарядов на стекле.

328. Пространство между пластинами плоского конденсатора заполнено трансформаторным маслом. Расстояние между пластинами 3 мм. Какое напряжение надо подать на пластины этого конденсатора, чтобы поверхностная плотность связанных поляризационных зарядов на масле была 0,62 нКл/см2?

329. Пространство между пластинами плоского конденсатора заполнено двумя слоями диэлектрика: слоем слюды толщиной 0,2 мм и слоем парафинированной бумаги толщиной 0,1 мм. Определить напряженность поля и падение потенциала в каждом из слоев, если разность потенциалов между обкладками конденсатора 220 В.

330. Плоский конденсатор, площадь каждой пластины которого 400 см2, заполнен двумя слоями диэлектрика: слоем парафинированной бумаги толщиной 0,2 см и слоем стекла толщиной 0,3 см. Определить разность потенциалов для каждого слоя и электроёмкость конденсатора, если разность потенциалов между его обкладками 600 В.

331. При каком внешнем сопротивлении потребляемая мощность будет максимальна, если два одинаковых источника с ЭДС 6 В и внутренним сопротивлением 1 Ом каждый соединены последовательно? Чему равна эта мощность?

332. Решить предыдущую задачу для случая, когда источники тока соединены параллельно.

333. ЭДС аккумулятора автомобиля 12 В. При силе тока 3 А его КПД 0,8. Определить внутреннее сопротивление аккумулятора.

334. Два одинаковых источника тока соединены в одном случае последовательно, в другом – параллельно и замкнуты на внешнее сопротивление 1 Ом. При каком внутреннем сопротивлении источника тока сила тока во внешней цепи будет в обоих случаях одинакова?

335. В проводнике за время 10 с при равномерном возрастании силы тока от 0 до 2 А выделилось количество теплоты 6 кДж. Найти сопротивление проводника.

336. При замыкании аккумуляторной батареи на резистор сопротив-лением 9 Ом в цепи идет ток силой 1 А. Сила тока короткого замыкания равна 10 А. Какую наибольшую полезную мощность может дать батарея?

337. Сила тока в проводнике равномерно увеличивается от нуля до некоторого максимального значения за 20 с. За это время в проводнике выделилось количество теплоты 4 кДж. Определить скорость нарастания тока в проводнике, если его сопротивление 6 Ом.

338. По алюминиевому проводу сечением 0,2 мм2 течет ток силой 0,3 А. Определить силу, действующую на отдельные свободные электроны со стороны электрического поля.

339. В медном проводнике площадью поперечного сечения 4 мм2и длиной 6 м ежеминутно выделяется количество теплоты 18 Дж. Вычислить напряженность электрического поля, плотность и силу электрического тока в проводнике.

340. Сила тока в проводнике сопротивлением 8 Ом за время 10 секунд равномерно возрастает от нуля до 12 А. Определить количество теплоты, выделившейся за это время в проводнике.

341. Бесконечно длинный провод образует круговой виток, касательный к проводу, по проводу идет ток силой 3 А. Найти радиус витка, если напряженность магнитного поля в центре витка 20 А/м.

 
342. По двум одинаковым круговым виткам радиусом 6 см, плоскости которых взаимно перпендикулярны, а центры совпадают, текут одинаковые токи силой 3 А. Найти напряженность и индукцию магнитного поля в центре витков.

343. По двум бесконечно длинным параллельным проводам, находя-щимся на расстоянии 10 см друг от друга в воздухе, текут в одном направлении токи силой 20 и 30 А. Определить индукцию магнитного поля в точке, лежащей на прямой, соединяющей оба провода, и находящейся на расстоянии 2 см от первого провода.

344. Решить предыдущую задачу при условии, что токи в проводниках текут в противоположных направлениях.

345. По двум длинным параллельным проводам, находящимся на расстоянии 4 см в воздухе, текут в одном направлении одинаковые токи силой 5 А. Определить индукцию и напряженность магнитного поля в точке, удаленной от каждого провода на расстояние 4 см.

346. Определить индукцию и напряженность магнитного поля в центре проволочной квадратной рамки со стороной 8 см, если по рамке проходит ток силой 3 А.

347. По двум тонким длинным параллельным проводам, расстояние между которыми 10 см, текут в одном направлении токи силой 3 и 2 А. Определить индукцию и напряженность магнитного поля в точке, удаленной на расстояние 6 см от первого провода и на расстояние 8 см от второго провода, если провода находятся в воздухе.

348. Бесконечно длинный прямой проводник согнут под прямым углом. По проводнику течет ток силой 2 А. Найти напряженность и магнитную индукцию в точке, расположенной на биссектрисе угла на расстоянии 5 см от сторон проводника.

349. По проводу, согнутому в виде правильного шестиугольника с длиной стороны 10 см, течет ток силой 5 А. Найти напряженность и магнитную индукцию в центре шестиугольника.

350. Два бесконечно длинных провода скрещены под прямым углом. Расстояние между проводами равно 10 см. По проводам текут одинаковые токи силой 10 А. Найти индукцию и напряженность магнитного поля в точке, находящейся на середине расстояния между проводами.

351. Прямой провод согнут в виде квадрата со стороной 8 см. Какой силы ток надо пропустить по проводнику, чтобы напряженность магнитного поля в точке пересечения диагоналей была 20 А/м?

352. Сила взаимодействия двух параллельных проводов, по которым текут одинаковые токи, равна 1 мН. Найти силу тока в проводах, если расстояние между ними 1 см, а длина каждого провода 1 м.

353. В однородном магнитном поле с индукцией 20 мТл находится прямоугольная рамка длиной 6 см и шириной 2 см, содержащая 100 витков проволоки. Сила тока в рамке 1 А, а плоскость рамки параллельна линиям магнитной индукции. Определить магнитный момент рамки и механический вращающий момент, действующий на рамку.

354. Каким образом надо расположить прямой алюминиевый проводник в однородном горизонтальном магнитном поле с индукцией 50 мТл и какой силы ток надо пропустить по нему, чтобы он находился в равновесии? Плотность алюминия Максимальное значение ЭДС индукции равно - student2.ru , а радиус проводника 1 мм.

355. Контур из провода, изогнутый в виде квадрата со стороной 5 см, расположен в одной плоскости с бесконечным прямолинейным проводом с силой тока 4 А так, что его две стороны параллельны проводу. Сила тока в контуре 0,2 А. Определить силу, действующую на контур, если ближайшая к проводу сторона контура находится на расстоянии 5 см.

356. Незакрепленный прямой проводник массой 1 г и длиной 8 см, по которому течет ток, находится в равновесии в горизонтальном одно­родном магнитном поле с напряженностью 100 кА/м. Определить силу тока в проводнике, если он перпендикулярен линиям индукции поля.

357. Проволочный виток радиусом 10 см, по которому течет ток силой 2 А, величина которого поддерживается неизменной, свободно установился в однородном магнитном поле. При повороте витка относительно оси, совпадающей с диаметром, на угол 600 была совершена работа 20 мкДж. Найти напряженность магнитного поля.

358. Проводник, согнутый в виде квадрата со стороной 8 см, лежит на столе. Квадрат, потянув за противоположные вершины, вытянули в линию. Определить совершенную при этом работу. Сила тока 0,5 А в проводнике поддерживается неизменной. Вертикальная составляющая напряженности магнитного поля Земли 40 А/м.

359. Проволочное кольцо радиусом 10 см, по которому течет ток силой 1 А, свободно установилось в однородном магнитном поле с индукцией 0,04 Тл. При повороте контура относительно оси, лежащей в плоскости кольца, на некоторый угол была совершена работа 0,157 мДж. Найти угол поворота контура. Считать, что сила тока в контуре поддерживается неизменной.

360. Проволочное кольцо радиусом 5 см лежит на столе. По кольцу течет ток силой 0,2 А. Поддерживая силу тока неизменной, кольцо перевернули с одной стороны на другую. Какая работа была совершена при этом? Вертикальную составляющую напряженности магнитного поля Земли принять равной 40 А/м.

361. В однородном магнитном поле с индукцией 20 мТл равномерно движется прямой проводник длиной 25 см, по которому течет ток силой 0,3 А. Скорость проводника 15 см/с и направлена перпендикулярно силовым линиям поля. Найти работу перемещения проводника за 5 с и мощность, затраченную на перемещение.

362. Протон и электрон, ускоренные одинаковой разностью потенциалов, влетают в однородное магнитное поле. Во сколько раз радиус кривизны траектории протона больше радиуса кривизны траектории электрона?

363. Протон и электрон, двигаясь с одинаковыми скоростями, влетают в однородное магнитное поле перпендикулярно линиям индукции. Во сколько раз радиус кривизны траектории протона больше радиуса кривизны траектории электрона?

364. Электрон, ускоренный электрическим полем с разностью потенциалов 300 В, влетает перпендикулярно силовым линиям в однородное магнитное поле и движется по окружности радиусом 10 см. Определить индукцию магнитного поля и период обращения электрона по окружности.

365. Электрон, двигаясь со скоростью 4 Мм/с, влетает под углом 60о к силовым линиям однородного магнитного поля с индукцией 1 мТл. Определить радиус и шаг винтовой линии, по которой будет двигаться электрон в магнитном поле.

366. В однородное магнитное поле с индукцией 0,1Тл влетает перпен-дикулярно силовым линиям Максимальное значение ЭДС индукции равно - student2.ru - частица с кинетической энергией 400 эВ. Найти силу, действующую на Максимальное значение ЭДС индукции равно - student2.ru - частицу, радиус окружности, по которой движется Максимальное значение ЭДС индукции равно - student2.ru - частица, и период обращения Максимальное значение ЭДС индукции равно - student2.ru - частицы.

367. Протон влетает в однородное магнитное поле под углом 60о к силовым линиям и движется по винтовой линии, радиус которой 1,5 см, индукция магнитного поля 10 мТл. Найти кинетическую энергию протона.

368. Перпендикулярно магнитному полю с индукцией 0,02 Тл возбуждено электрическое поле с напряженностью 20 кВ/м. Перпендикулярно обоим полям прямолинейно движется заряженная частица. Определить скорость частицы.

369. В однородном магнитном поле с индукцией 0,2 Тл движется протон. Траектория его движения представляет винтовую линию с радиусом 10 см и шагом 60 см. Определить скорость протона.

370. В однородном магнитном поле перпендикулярно линиям магнитной индукции движется прямой проводник длиной 60 см. Опре­делить силу Лоренца, действующую на свободный электрон в проводнике, если на его концах возникает разность потенциалов 20 мкВ.

371. Индукция магнитного поля между полюсами двухполюсного генератора 0,8 Тл. Ротор имеет 100 витков площадью 400 см2. Определить частоту вращения ротора, если максимальное значение ЭДС индукции 200 B .

372. В однородном магнитном поле с индукцией 10 мТл равномерно с частотой 5 оборотов в секунду вращается стержень длиной 40 см так, что плоскость его вращения перпендикулярна линиям индукции магнитного поля, а ось вращения проходит через один из его концов. Определить индуцируемую на концах стержня разность потенциалов.

373. Какой силы ток течет через гальванометр, присоединенный к железнодорожным рельсам, расстояние между которыми 152 см, когда к нему со скоростью 72 км/ч приближается поезд? Вертикальную составляющую индукции магнитного поля Земли принять равной 50 мкТл; сопротивление гальванометра 50 Ом.

374. Катушка из 100 витков площадью 15 см2 вращается в однородном магнитном поле с частотой 5 оборотов в секунду. Ось вращения перпендикулярна оси катушки и силовым линиям поля. Определить индукцию магнитного поля, если максимальное значение ЭДС индукции, возникающей в катушке, равно 0,25 В.

375. В проволочное кольцо, присоединенное к баллистическому галь-ванометру, вставили прямой магнит. При этом по цепи прошел заряд 50 мкКл. Определить изменение магнитного потока через кольцо, если сопротивление цепи гальванометра 10 Ом.

376. Тонкий провод сопротивлением 0,2 Ом согнут в виде квадрата со стороной 10 см и концы его замкнуты. Квадрат помещен в однородное магнитное поле с индукцией 4 мТл так, что его плоскость перпендикулярна силовым линиям поля. Определить заряд, который протечет по проводнику, если квадрат, потянув за противоположные вершины, вытянуть в линию.

377. Рамка из провода сопротивлением 0,06 Ом равномерно вращается в однородном магнитном поле с индукцией 4 мТл. Ось вращения лежит в плоскости рамки и перпендикулярна линиям индукции. Площадь рамки 100 см2. Определить заряд, который потечет по рамке при изменении угла между нормалью к рамке и линиями индукции: 1) от 0 до 45о; 2) от 45о до 90о.

378. Сила тока в соленоиде равномерно возрастает от 0 до 5 А за 10 с, при этом в соленоиде возникает магнитное поле с энергией 100 мДж. Определить среднюю ЭДС самоиндукции, возникающую в соленоиде.

379. Соленоид длиной 30 см и площадью поперечного сечения 10 см2 с сердечником из немагнитного материала (m = 1) содержит 600 витков. Определить индуктивность соленоида и среднее значение ЭДС самоиндукции, возникающей при выключении тока в соленоиде, если сила тока уменьшается от 0,8 А до 0 за время 150 мкс.

380. Соленоид сечением 20 см2 и длиной 40 см с сердечником из немагнитного материала (m = 1) содержит 800 витков. Найти индук­тив­ность соленоида, полный магнитный поток, сцепленный с соленоидом, и энергию магнитного поля, если по виткам течет ток силой 2 А.

5. КОНТРОЛЬНАЯ РАБОТА № 4 “КОЛЕБАНИЯ И ВОЛНЫ”

Наши рекомендации