Равновесие в системе жидкость-пар. Закон Рауля
В общем случае жидкая смесь может состоять из нескольких компонентов. В простейшем случае- из двух, например из компонентов А и В. Характер поведения жидкой смеси зависит главным образом от природы составляющих ее веществ и давления.
Для идеальных растворов характерно то, что сила взаимодействия между всеми молекулами (одноименными и разноименными) равна. При этом общая сила, с которой молекула удерживается в смеси, не зависит от состава смеси. Очевидно, что парциальное давление в этом случае должно зависеть лишь от числа молекул, достигающих в единицу времени поверхности жидкости со скоростью, необходимой для преодоления сил внутреннего притяжения молекул, т. е. при данной температуре давление соответствующего компонента возрастает пропорционально его содержанию в жидкой смеси (закон Рауля):
Закон Рауля справедлив и для газов с температурой ниже критической (т. е. такой температуры, выше которой газ при увеличении давления не сжижается).
50………….Периодическая ректификация.
Периодические ректификационные установки применяют, как правило в тех случаях, когда использование непрерывно действующих установок нецелесообразно. Обычно это характерно для технологических процессов, в которых количества подлежащих разделению смесей невелики и требуется определённое время для накопления этих продуктов перед разделением или в условиях часто меняющегося состава исходной смеси. Последний случай специфичен для гибких технологических процессов, в которых спектр получаемых продуктов весьма разнообразен.
Рассмотрим один из возможных вариантов установки для проведения периодической ректификации. Исходную смесь периодически загружают в куб – кипятильник 1, снабжённый подогревателем 2, в который подаётся теплоноситель, например насыщенный водяной пар. Исходную смесь доводят до кипения. Образующиеся пары поднимаются по колонне 3, в которой происходит противоточное взаимодействие этих паров с жидкостью, поступающей из дефлегматора 4. Часть конденсата после делителя потока возвращается в колонну в виде флегмы, другая часть – дистиллят Р – через холодильник 6 собирается в сборниках 7 в виде отдельных фракций. Процесс ректификации заканчивают обычно после того, как будет достигнут заданный средний состав дистиллята. Таким образом колонна 3 является аналогом укрепляющей части колоны непрерывного действия, а куб выполняет роль исчерпывающей части.
Рис.5 Схема установки для проведения периодической ректификации:
1 – куб – кипятильник; 2 – подогреватель; 3 – ректификационная колонна; 4 – дефлегматор; 5 – делитель потока; 6 – холодильник; 7 – сборники
Периодическая ректификация может осуществляться двумя способами: 1) при постоянном составе дистиллята, 2) при постоянном флегмовом числе
В первом случае количество флегмы по мере уменьшения содержания легколетучего компонента в кубе должно постепенно возрастать. В промышленных условиях установки для проведения такого процесса необходимо оснащать управляющими автоматизированными системами, способными осуществлять непрерывное и строго программированное изменение питания колонны флегмой и подачи теплоносителя в испаритель. Изменение основных расходных параметров можно проводить, например, по данным о качественном составе легколетучего компонента либо в кубовой жидкости, либо в дистилляте.
Расчет процесса этого варианта работы периодической ректификации сводится к определению интервала изменений флегмового числа и основных размеров ректификационной колонны.
В случае проведения периодической ректификации при постоянном флегмовом числе состав получаемого дистиллята изменяется во времени. Этот способ более широко применяется в производственных условиях. При этом, как правило, проводят так называемую фракционную перегонку, когда получаемый дистиллят собирают по фракциям определённого состава в отдельные сборники
46……………..Экстрактивная ректификация
Ректификация жидких смесей с использованием разделяющего агента, получившая название э к с т р а к т и в н о й ректификации, осуществляется по схеме, приведенной на рис. 11-12, а. Установка состоит из двух обычных ректификационных колонн, в первую из которых на одну из верхних тарелок укрепляющей части вводится поток разделяющего агента. Последний растворяется в стекающем потоке флегмы, повышает относительную летучесть и, следовательно, интенсивность отгонки низкокипящего компонента, увлекая вниз, как бы э к с т р а г и р у я из паровой фазы высококипящий компонент. Кубовая жидкость первой колонны, представляющая собою смесь разделяющего агента и высококипящего компонента исходной смеси, р е к т и ф и ц и р у е т с я во второй колонне, откуда дистиллят (высококипящий компонент исходной смеси) отводится по назначению, а кубовый остаток (регенерированный разделяющий агент) возвращается на повторное использование в первую колонну.
Для определения требуемого числа теоретических тарелок удобно пользоваться, как и в предыдущих случаях, диаграммой фазового равновесия х-у, построенной в относительных концентрациях компонентов разделяемой смеси, т.е. без учета присутствия разделяющего агента в жидкой фазе (его концентрация в паровой фазе практически равна нулю). Тогда сохраняются приведенные выше уравнения и способы построения рабочих линий укрепляющей и исчерпывающей колонн. Необходимо только учесть, что в исчерпывающей колонне благодаря вводу исходной смеси концентрация разделяющего агента ниже, чем в укрепляющей колонне. Так как относительная летучесть компонентов разделяемой смеси падает с уменьшением концентрации разделяющего агента в жидкой фазе, то участок кривой равновесия в зоне исчерпывающей колонны скачкообразно приблизится к диагонали (рис. 11-12, б).
Рис. 11-12. Экстрактивная ректификация:
а – схема установки: 1, 2 – ректификационные колонны; 3 – вход исходной смеси; 4 – вход разделяющего агента; 5 – насос для подачи регенерированного разделяющего агента; б – к расчету числа теоретических тарелок.