Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения.

Частным случаем рассмотренных выше линейных однородных дифференциальных уравнений являются ЛОДУ с постоянными коэффициентами.

Пусть дано ЛОДУ второго порядка

Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru ,

Где p и q постоянны.

Для нахождения общего решения уравнения Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru достаточно найти два его частных решений, образующих фундаментальную систему.

Будем искать частные решения уравнения Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru в виде

,

где k – некоторое число. Дифференцируя эту функцию 2 раза и подставляя выражения для у, у’ и у’’ в уравнение Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru , получим: Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru , т.е.

Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru , или Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru =0 ( Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru ).

Уравнение Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru =0 ( Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru ) называется характеристическим уравнением ДУ Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru .

При его решении возможны следующие три случая

Случай 1: Корни уравнения Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru и Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru уравнения Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru =0 ( Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru ). Действительные и различные: Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru (D = Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru - q > 0).

В этом случае частными решениями уравнения Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru являются функции Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru = Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru

и Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru = Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru . Они образуют фундаментальную систему решений (линейно независимы), т.к. их вронскиан

W(x) = Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru = Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru

Следовательно, общее решение уравнения Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru ,

Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru

Случай 2: Корни Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru и Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru характеристического уравнения Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru =0 ( Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru ), действительные равные: Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru .

В этом случае имеем лишь одно частное решение Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru .

Покажем, что наряду с Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru решением уравнения Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru будет и Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru .

Действительно, подставим функцию Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru в уравнение Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru . Имеем: Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru +

Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru

Но Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru , т.к. Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru есть корень уравнения Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru =0 ( Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru ) ; Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru , т.к. по условию Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru .

Поэтому Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru , т.е. функция Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru является решением уравнения Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru .

Частные решения Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru и Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru образуют фундаментальную систему решений: Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru . Следовательно, в этом случае общее решение ЛОДУ Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru имеет вид

Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru

Случай 3: Корни Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru и Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru уравнения Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru =0 ( Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru ) комплексные: Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru , Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru

В этом случае частными решениями уравнения Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru являются функции Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru и Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru .

По формулам Эйлера:

Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru , Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru

Имеем

Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru ,

Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru .

Найдем два действительных частных решения уравнения Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru . Для этого составим две линейные комбинации решений для Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru и Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru :

Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru и Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru .

Функции Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru и Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru являются решениями уравнения Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru , что следует из свойств решений ЛОДУ второго порядка. Эти решения Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru и Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru образуют фундаментальную систему решений, т.к. Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru . Поэтому общее решение данного уравнения запишется в виде Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru или

Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru

Экономические приложения интегралов

Традиционно практическое приложение интеграла иллюстрируется вычислением площадей различных фигур, нахождением объемов геометрических тел и некоторыми приложениями в физике и технике. Однако роль интеграла в моделировании экономических процессов не рассматривается. Вместе с тем, интегральное исчисление дает богатый математический аппарат для моделирования и исследования процессов, происходящих в экономике.

Определение интегральной суммы позволяет использовать понятие определенного интеграла в социально-экономической сфере. Его применение основано на том, что любой меняющийся социально-экономический процесс может быть интерпретирован как скачкообразный, скачки которого близки к нулю.

Потребительский излишек

Остановимся на нескольких примерах использования интегрального исчисления в экономике. Начнем с широко используемого в рыночной экономике понятия потребительского излишка (CS–consumer’s surplus). Для этого введем несколько экономических понятий и обозначений.

Спрос на данный товар (D–demand) – сложившаяся на определенный момент времени зависимость между ценой товара и объемом его покупки. Спрос на отдельный товар графически изображается в виде кривой с отрицательным наклоном, отражающей взаимосвязь между ценой P (price) единицы этого товара и количеством товара Q (quantity), которое потребители готовы купить при каждой заданной цене. Отрицательный наклон кривой спроса имеет очевидное объяснение: чем дороже товар, тем меньше количество товара, которое покупатели готовы купить, и наоборот.

Аналогично определяется и другое ключевое понятие экономической теории – предложение (S–supply) товара: сложившаяся на определенный момент времени зависимость между ценой товара и количеством товара, предлагаемого к продаже. Предложение отдельного товара изображается графически в виде кривой с положительным наклоном, отражающей взаимосвязь между ценой единицы этого товара P и количеством товара Q, которое потребители готовы продать при каждой цене.

Отметим, что экономисты сочли удобным изображать аргумент (цену) по оси ординат, а зависимую переменную (количество товара) по оси абсцисс. Поэтому графики функций спроса и предложения выглядят следующим образом

И, наконец, введем еще одно понятие, играющее большую роль в моделировании экономических процессов – рыночное равновесие (equilibrium). Состояние равновесия характеризуют такие цена и количество, при которых объем спроса совпадает с величиной предложения, а графически рыночное равновесие изображается точкой пересечения кривых спроса и предложения (рис. 2.2), E*(p*; q*) – точка равновесия.

Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru

Рис.2.2 Точка рыночного равновесия

В дальнейшем для удобства анализа мы будем рассматривать не зависимость Q = f(P), а обратные функции спроса и предложения, характеризующие зависимость P = f(Q), тогда аргумент и значение функции графически будут изображаться привычным для нас образом.

Перейдем теперь к рассмотрению приложений интегрального анализа для определения потребительского излишка [5]. Для этого изобразим на графике обратную функцию спроса P = f(Q). Допустим, что рыночное равновесие установилось в точке E*(q*; p*) (кривая предложения на графике отсутствует для удобства дальнейшего анализа, рис.2.3).

Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru

Рис.2.3. График рыночного равновесия

Если покупатель приобретает товар в количестве Q* по равновесной цене P*, то очевидно, что общие расходы на покупку такого товара составят P*Q*, что равно площади заштрихованной фигуры A (рис.2.4).

Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru

Рис.2.4. Общие расходы на покупку товара

Но предположим теперь, что товар в количестве Q* продается продавцами не сразу, а поступает на рынок небольшими партиями Q. Именно такое допущение вместе с предположением о непрерывности функции спроса и предложения является основным при выводе формулы для расчета потребительского излишка (см. [2.1–2.4]). Отметим, что данное допущение вполне оправдано, потому что такая схема реализации товара довольно распространена на практике и вытекает из цели продавца поддерживать цену на товар как можно выше. определенный интеграл экономический смысл

Тогда получим, что сначала предлагается товар в количестве Q1 = D Q (рис.2.5), который продается по цене P1 = f(Q1). Так как по предположению величина Q мала, то можно считать, что вся первая партия товара реализуется по цене P1, при этом затраты покупателя на покупку такого количества товара составят P1D Q, что соответствует площади заштрихованного прямоугольника S1 (рис.2.5) [5].

Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru

Рис.2.5. Затраты покупателя

Далее на рынок поступает вторая партия товара в том же количестве, которая продается по цене P2 = f(Q2), где Q2 = Q1 + D Q – общее количество реализованной продукции, а затраты покупателя на покупку второй партии составят P2D Q, что соответствует площади прямоугольника S2.

Продолжим процесс до тех пор, пока не дойдем до равновесного количества товара Q* = Qn. Тогда становится ясно, какой должна быть величина DQ для того, чтобы процесс продажи товара закончился в точке Q*:

Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru

В результате получим, что цена n-й партии товара Pn = f(Qn) = f(Q*) = P*, а затраты потребителей на покупку этой последней партии товара составят PnD Q, или площадь прямоугольника Sn.

Таким образом, мы получим, что суммарные затраты потребителей при покупке товара мелкими партиями D Q равны:

Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru

Так как величина D Q очень мала, а функция f(Q) непрерывна, то заключаем, что Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru приблизительно равна площади фигуры B (рис.2.6) [5].

Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru

Рис.2.6. Суммарные затраты потребителей

Площадь фигуры B при малых приращениях аргумента D Q равна определенному интегралу от обратной функции спроса при изменении аргумента от 0 до Q*, т. е. в итоге получим, что:

Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru (2.1)

Вспомнив, что каждая точка на кривой спроса Pi = f(Qi) (i = 1, 2, ..., k) показывает, какую сумму потребитель готов заплатить за покупку дополнительной единицы продукта, получим, что площадь фигуры B соответствует общей денежной сумме, которую потребитель готов потратить на покупку Q* единиц товара. Разность между площадью фигуры B и площадью прямоугольника A есть потребительский излишек при покупке данного товара – превышение общей стоимости, которую потребитель готов уплатить за все единицы товара, над его реальными расходами на их приобретение (площадь заштрихованной фигуры на рисунке 2.7).

Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru

Рис.2.7. Потребительский излишек

Таким образом, потребительский излишек можно посчитать по следующей формуле:

Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Вид общего решения однородного уравнения. - student2.ru , (2.2)

Наши рекомендации