Физика и классическая механика

Физика и механика — термины, заимствованные из древнегреческого языка. Первый означает в буквальном переводе природа, второй — искусство создания машин, машина или механизм. Физика— наука о самых фундаментальных элементах материального мира, природы, Вселенной в целом, о законах и физических силах, господствующих во всем окружающем человека мироздании.

К фундаментальным элементам, которые изучает физика, относятся частицы,

атомы, ядра атомов, вещество, поле и т. п. Физические силы, изучаемые физикой,

— это силы, которые действуют между материальными телами, частицами, полями, излучениями. Физика отличается от химии. Химияизучает в основном вещества, их строение, свойства и превращения. Химические

1 Концепции современного естествознания. 100 экзаменационных ответов. Экспресс-

справочник для студентов вузов. Ростов-на-Дону, 2002. С. 58.

свойства вещества — это способность вещества превращаться в другие вещества. Всвое время М. В. Ломоносов прозорливо заметил, что химия будет сближаться с физикой в изучении химических свойств веществ. До второй половины ХХ в. химия изучала способность превращения вещества на уровне электронных оболочек атомов (обмен электронами и т. п.). Современная химия изучает превращение веществ уже с учетом их внутреннего физического строения (ядро атома, его состав, силы взаимодействия внутри ядра т. п.).

Первая научная физическая теория была создана в XVII в.В ее создании участвовало много великих умов человечества, однако ее создателями считаются Галилей и Ньютон. Созданная ими физическая теория называется механикой Галилея — Ньютона. Дальнейшее развитие этой механики называется классической механикой.

Классическую механику называют теорией макромира или макротел, т. е. разделом физики, изучающим физические события, явления в мире материальных тел и систем материальных тел, физические параметры которых достаточно велики (движение молекул, тел, состоящих из молекул и т.д.). Методы и технические средства исследования классической механики не оказывают существенного влияния на физические параметры исследуемых объектов. Измеряя температуру жидкости в сосуде спомощью термометра, исследователь знает, что температура самого термометра существенно не изменит температуру измеряемой жидкости. Иначе обстоит дело, когда исследователь работает сэлектронным микроскопом. Здесь происходит воздействие прибора на изучаемый объект. И оно существенно.

Раздел механики, вкотором изучается движение материального тела во времени без учета причин, вызывающих это движение, называется кинематикой. Динамика— это раздел механики, в котором изучаются законы механического движения материальных тел с учетом причин, вызывающих эти движения.

Под причинойв механике понимается сила, воздействие которой приводит к изменению состояния механического движения материального тела. В механике для определения изменения состояния движения материального тела используетсяпонятие «система отсчета».Это произвольно выбранная система материальных тел (отдельное тело или материальная точка как обозначение материального тела), с которой связана система прямоугольных коор-

динат. Эта система координат позволяет определить положение тел в пространстве иизменение их положения относительно других тел в этом пространстве в результате их механического движения.

Классическая механика постулирует (принимает без доказательства), что в механическом движении тела, системы тел их внутренние физическое свойства ивнешние физические параметры не изменяются. Масса тела (систем тел) остается постоянной, температура, плотность и другие показатели остаются также неизменными. Следовательно, любое материальное тело можно представить как материальную точку или как систему, состоящую из множества материальных

точек. Такой подход позволяет исследовать механическое движение частиц,

составляющих тела, в различных агрегатных состояниях: твердое тело, жидкость, газ, фазовые переходымежду агрегатными состояниями. В твердом теле частицы находятся вблизи, на коротких расстояниях, в жидкости — на больших расстояниях и т. п.

В механике рассматриваются замкнутые и незамкнутые системытел. Замкнутые системы — это взаимодействие тел без учета воздействия на них внешних сил. Сам источник возникновения движения в материальном мире тел в механике как физической теории не рассматривается. Обсуждение этого вопроса возникает в механической картине мира. Незамкнутые системы — это взаимодействия тел с учетом действия на них внешних сил или окружающей среды.

Механика Галилея

Во времена молодости Галилея признанным авторитетом в науке считался Аристотель. Поэтому от Галилея требовали соответствия его физических идей принципам физики, учению Аристотеля о природе. Галилей первым использовал новый метод исследования природы, получивший название мысленного эксперимента.Так, рассуждая над принципом Аристотеля (ускорение движения тела к центру Земли пропорционально его весу), Галилей сформулировал мысленную ситуацию, когда падение тела к поверхности является свободным (идеальным, без препятствий воздуха, веса, размера, плотности и т. д.). В этой ситуации свободное падение тела можно рассматривать абстрактно как движение тела по наклонной плоскости под углом 90" к поверхности. Специально сконструированный Галилеем эксперимент движения тел по на-

клонной плоскости подтверждал принцип, согласно которому все тела падают

на поверхность Земли с одним и тем же ускорением (среднее — 9,8 м/с2), т. е.

независимо от материала, из которого они созданы.

Свое учение о движении Галилей изложил в форме принципов.

Принцип инерции.Если на тело не действуют никакие силы, то оно покоится или движется равномерно и прямолинейно. Инерция(лат. inertia) означает неподвижность и бездеятельность. Строго говоря, обычный опыт не позволяет обосновать этот принцип. В мире все находится в движении. Однако в нем выражена существенная черта движения вне действия внешних сил, причин изменения движения любого материального тела: без физического взаимодействия нет движения.

Принцип относительности.Во всех инерциальных системах отсчета законы движения, удовлетворяющие принципу инерции, выглядят или протекают одинаковым образом. Этот принцип равносилен утверждению о том, что все инерциальные системы отсчета эквивалентны, т. е. ни одной из них нельзя отдать предпочтение перед другой. В этом принципе выражена глубокая мысль об универсальном характере физических законов, хотя речь в нем идет только о законах механического движения. Галилей выразил принцип эквивалентности, равноправия всех инерциальных систем отсчета в так называемом методе преобразования координат, т. е. правил описания одного и того же физического события в разных системах отсчета.

Эти преобразования называются преобразованиями Галилея. Согласно этим преобразованиям течение времени, его ритм во всех инерциальных системах отсчета происходит одинаково: t(01) = t(02), где t(01) — время в системе отсчета 01,

и t(02) — в системе 02.

Правило сложения скоростей в преобразованиях Галилея не допускает

существования конечной, предельной скорости движения: у него С + V и С — V,

где С — скорость света, имеют разные величины.

Неизменными в преобразованиях Галилея остаются размеры движущего тела и его массы в разных системах отсчета. Принцип эквивалентности

инерциальных систем отсчета Галилея не позволяет ответить на вопрос: данная

система покоится или движется прямолинейно и равномерно? Это решение вызвало дискуссию, существует ли в мире абсолютная система отсчета. Нали-

чие подобной системы отсчета позволило бы ответить на вопрос: вращается Земля вокруг своей оси или вращается небесная сфера со звездами относительно неподвижной Земли?

Птолемей — автор геоцентрической системы мира — отрицал вращение Земли,

ссылаясь на эффекты действия центробежной силы, возникающей при вращении,

в результате которых Земля должна разлететься на части.

Н. Коперник, напротив, считал, что Земля вращается вокруг собственной оси, а центробежные эффекты относятся к небу (там огромные расстояния). Галилей в трактате «Диалог о двух системах мира: птолемеевской и коперииковской» (1632) предложил метод определения вращения Земли. Если с башни высотой в 100 м, расположенной на экваторе Земли, сбросить металлический шар определенного веса, то из-за разности угловой скорости на высоте башни и ее основания этот шар должен упасть на расстоянии 2,5 см от основания башни в направлении на восток (Земля вращается с запада на восток). Поскольку этот эксперимент трудно было осуществить, то среди многих мыслителей того времени бытовало убеждение, что Земля не вращается. Человеческий организм не ощущает вращения Земли. В 1851 г. Л. Фуко (1819—1869) предложил метод определения вращения Земли с помощью колеблющегося маятника, получившего название маятник Фуко.

С поиском абсолютной системы отсчета связан еще один физический вопрос: количество движения в мире (на современном языке — энергии) остается постоянным или нет? Французский философ, математик, физик Р. Декарт, который разработал систему прямоугольных координат и сформулировал свою теорию механического движения, в третьем своем законе механического движения утверждал, что количество движения в созданном Богом мире является постоянным и неизменным.

Из философии Р. Декарта следовало, что в мире нет пустоты, поэтому все силы физического взаимодействия не могут быть силами дальнодействия, а только силами близкодействия, т. е. через соприкосновение и передачу воздействия через физическую среду. С физической теорией Р. Декарта связано понятие флюидов (текущие) как потока частиц, обеспечивающих процесс передачи тепла, электричества и магнитных сил. Поиски абсолютной системы отсчета сохранились вплоть до конца XIX в.

Наши рекомендации