Наращение и дисконтирование денежных потоков

Поскольку процесс инвестирования, как правило, имеет большую продолжительность в практике анализа эффективности капитальных вложений, обычно приходится иметь дело не с единичными денежными суммами, а с потоками денежных средств.

Вычисление наращенной и дисконтированной оценок сумм денежных средств в этом случае осуществляется путем использования соответствующих формул (4.1) и (4.2) для каждого элемента денежного потока.

Денежный поток принято изображать на временной линии в одном из двух способов:

А.

Наращение и дисконтирование денежных потоков - student2.ru

В.

Наращение и дисконтирование денежных потоков - student2.ru

Представленный на рисунке денежный поток состоит в следующем: в настоящее время выплачивается (знак “минус”) $2,000, в первый и второй годы получено $1,000, в третий - $1,500, в четвертый - снова $1,000.

Элемент денежного потока принято обозначать CFk (от Cash Flow), где k - номер периода, в который рассматривается денежный поток. Настоящее значение денежного потока обозначено PV ( Present Value), а будущее значение - FV ( Future Value).

Используя формулу (4.1), для всех элементов денежного потока от 0 до n получим будущее значение денежного потока

Наращение и дисконтирование денежных потоков - student2.ru (4.5)

Пример 4. После внедрения мероприятия по снижению административных издержек предприятие планирует получить экономию $1,000 в год. Сэкономленные деньги предполагается размещать на депозитный счет (под 5 % годовых) с тем, чтобы через 5 лет накопленные деньги использовать для инвестирования. Какая сумма окажется на банковском счету предприятия?

Решим задачу с использованием временной линии.

Наращение и дисконтирование денежных потоков - student2.ru

Таким образом, через 5 лет предприятие накопит $5,526, которые сможет инвестировать.

В данном случае денежный поток состоит из одинаковых денежных сумм ежегодно. Такой поток называется аннуитетом. Для вычисления будущего значения аннуитета используется формула

Наращение и дисконтирование денежных потоков - student2.ru , (4.6)

которая следует из (4.5) при CFk = const и CF0 = 0.

Расчет будущего значения аннуитета может производиться с помощью специальных финансовых таблиц. Фрагмент этих таблиц помещен в приложении (таблица 2). В частности, с помощью таблицы 2 при r = 5% и n = 5 получаем множитель 5,526, который соответствует результату расчета примера.

Дисконтирование денежных потоков осуществляется путем многократного использования формулы (4.2), что в конечном итоге приводит к следующему выражению:

Наращение и дисконтирование денежных потоков - student2.ru (4.7)

Пример 5. Рассмотрим денежный поток с неодинаковыми элементами CF1=100, CF2=200, CF3=200, CF4=200, CF5=200, CF6=0, CF7=1,000, для которого необходимо определить современное значение (при показателе дисконта 6%). Решение проводим с помощью временной линии:

Наращение и дисконтирование денежных потоков - student2.ru

Вычисление дисконтированных значений отдельных сумм можно производить путем использования таблицы 3, помещенной в приложении

Дисконтирование аннуитета (CFj = const) осуществляется по формуле

Наращение и дисконтирование денежных потоков - student2.ru (4.8)

Для расчета настоящего (современного) значения аннуитета может быть использована таблица 4 приложения.

Пример 6. Предприятие приобрело облигации муниципального займа, которые приносят ему доход $15,000, и хочет использовать эти деньги для развития собственного производства. Предприятие оценивает прибыльность инвестирования получаемых каждый год $15,000 в 12 %. Необходимо определить настоящее значение этого денежного потока.

Решение проведем с помощью таблицы:

Год Множитель при 12% дисконтирования Поток денег Настоящее значение
0.893 $15,000 $13,395
0.797 $15,000 $11,955
0.712 $15,000 $10,680
0.636 $15,000 $9,540
0.567 $15,000 $8,505
  3.605 $75,000 $54,075

По результатам расчетов мы видим, что

  • дисконтированное значение денежного потока существенно меньше арифметической суммы элементов денежного потока,
  • чем дальше мы заходим во времени, тем меньше настоящее значение денег: $15,000 через год стоят сейчас $13,395; $15,000 через 5 лет стоят сейчас $8,505.

Задача может быть решена также с помощью таблицы 4 приложения. При r = 12% и n = 5 по таблице находим множитель дисконтирования 3.605.

Современное значение бесконечного (по времени) потока денежных средств определяется по формуле:

Наращение и дисконтирование денежных потоков - student2.ru , (4.9)

которая получается путем суммирования бесконечного ряда, определяемого формулой (4.8) при Наращение и дисконтирование денежных потоков - student2.ru .

4.5. Сравнение альтернативных возможностей вложения денежных средств с помощью техники дисконтирования и наращения

Техника оценки стоимости денег во времени позволяет решить ряд важных задач сравнительного анализа альтернативных возможностей вложения денег. Рассмотрим эту возможность на следующем примере.

Пример 7. Комплексное пояснение к временной стоимости денег. Рассмотрим поток $1,000, который генерируется какой либо инвестицией в течение 3 лет. Расчетная норма прибыльности инвестирования денежных средств предприятия составляет 10 %.

Наращение и дисконтирование денежных потоков - student2.ru

Попытаемся последовательно ответить на ряд вопросов, связанных с различными ситуациями относительно этого потока и его использования.

Вопрос 1. Какова современная стоимость этого потока?

Наращение и дисконтирование денежных потоков - student2.ru

Вопрос 2. Какова будущая стоимость $2,486.85 на конец 3 года? (то есть если бы мы вложили деньги в банк под r = 10% годовых)?

Наращение и дисконтирование денежных потоков - student2.ru

Вопрос 3. Какова будущая стоимость потока денежных средств на конец 3-го года?

Наращение и дисконтирование денежных потоков - student2.ru

Мы получили одинаковые ответы на второй и третий вопросы. Вывод очевиден: если мы инвестируем в какой-либо бизнес $2,486.85 и эта инвестиция генерирует заданный поток денег $1,000, $1,000, $1,000, то на конец 3-го года мы получим ту же сумму денег $3,310, как если бы просто вложили $2,486.85 в финансовые инструменты под 10% годовых.

Пусть теперь величина инвестиции составляет $2,200, а генерируемый поток такой же, что приводит к концу 3-го года к $3,310.

Инвестирование $2,200 в финансовые инструменты под 10% даст, очевидно, Наращение и дисконтирование денежных потоков - student2.ru . Значит нам более выгодно инвестировать в данном случае в реальный бизнес, а не в финансовые инструменты.

Вопрос 4. Как изменится ситуация, если норма прибыльности финансового вложения денег r станет выше, например 12%.

По-прежнему мы инвестируем $2,486.85 в бизнес, и это приводит к потоку денежных средств $1,000 каждый год в течение 3-х лет. Современное значение этого потока

Наращение и дисконтирование денежных потоков - student2.ru

уменьшилось и стало меньше исходной суммы инвестиций $2,486.85.

Сравним будущее значение исходной суммы $2,486.85 и потока денежных средств, который генерирует инвестирование этой суммы в бизнес:

Наращение и дисконтирование денежных потоков - student2.ru ;

Наращение и дисконтирование денежных потоков - student2.ru

Выводы, которые можно сделать на основе сравнения этих значений таковы:

a) инвестирование суммы $2,486.85 в финансовые инструменты под 12% годовых приведет к $3,493.85 через 3 года,

б) инвестирование суммы $2,486.85 в бизнес, который генерирует денежный поток $1,000 каждый год в течение 3-х лет, приведет к $3,374.40 к концу 3-го года.

Очевидно, что при норме прибыльности 12% инвестировать в бизнес не выгодно.

Данный вывод имеет простое экономическое объяснение. Дело в том, что инвестирование денег в финансовые инструменты начинает приносить доход сразу же, начиная с первого года. В то же время, инвестирование денег в реальные активы позволяет получить первую $1,000 только к концу первого года, и она приносит финансовый доход только в течение оставшихся двух лет. Другими словами, имеет место запаздывание сроков начала отдачи в случае инвестирования реальные активы по сравнению с инвестицией в финансовые инструменты. И если при норме прибыльности 10 процентов оба варианта вложения денег равносильны в смысле конечной суммы “заработанных” денег, то увеличение нормы прибыльности делает инвестицию в финансовые инструменты более выгодной.

Возвратимся к количественному сравнению эффективности альтернативного вложения денег. Рассмотрим, насколько выгоднее вкладывать деньги в финансовые инструменты по сравнению с реальными инвестициями в двух временных точках: момент времени “сейчас” и конец третьего года.

В настоящее время поток денежных средств от реальной инвестиции составляет $2,401.83 при исходной инвестиции $2,486.85. Значит финансовая инвестиция более выгодна на $85. К концу третьего года финансовая инвестиция принесет $3,493.85, а реальная инвестиция - $3,374.40. Разница составляет $119.45. Существенно подчеркнуть, что это различие также подчиняется концепции стоимости денег во времени, т.е. продисконтировав $119.45 при 12 процентах, мы закономерно получим $85.

Задания.

1. Предположим Вы купили шестилетний 8-ми процентный сберегательный сертификат стоимостью $1,000. Если проценты начисляются ежегодно, какую сумму Вы получите по окончанию контракта?

Решение.

Используем формулу наращения денег, т.е. определяем будущую стоимость $1,000 через 6 лет при 8 процентах годовой прибыли:

Наращение и дисконтирование денежных потоков - student2.ru

Такой же результат получается с помощью финансовой таблицы 1 прил. Проверьте.

2. Финансовый менеджер предприятия предложил Вам инвестировать Ваши $5,000 в его предприятие, пообещав возвратить Вам $6,000 через два года. Имея другие инвестиционные возможности, Вы должны выяснить, какова процентная ставка прибыльности предложенного Вам варианта.

Решение.

Используем основную формулу наращения денег:

Наращение и дисконтирование денежных потоков - student2.ru

откуда следует

Наращение и дисконтирование денежных потоков - student2.ru

В нашем случае

Наращение и дисконтирование денежных потоков - student2.ru

Ясно, что если кто-либо предложит Вам инвестировать Ваши деньги под, хотя бы, 10 процентов годовых, Вы отклоните предложение получить $6,000 через два года, вложив сейчас $5,000.

3. Вам предлагают инвестировать деньги с гарантией удвоить их количество через пять лет. Какова процентная ставка прибыльности такой инвестиции?

Решение.

Используем основную формулу предыдущей задачи, учитывая, что будущее значение какой-либо суммы через пять лет FV5 и ее современное значение PV относятся как 2:1.

Наращение и дисконтирование денежных потоков - student2.ru

4.Предприятие собирается приобрести через три года новый станок стоимостью $8,000. Какую сумму денег необходимо вложить сейчас, чтобы через три года иметь возможность совершить покупку, если процентная ставка прибыльности вложения составляет

а) 10 процентов? б) 14 процентов?

Решение.

По условию задачи мы должны определить современное значение стоимости станка $8,000 при ставке дисконта 10 процентов. Используем формулу дисконтирования:

Наращение и дисконтирование денежных потоков - student2.ru

Аналогично для случая б):

Наращение и дисконтирование денежных потоков - student2.ru

Закономерно, что во втором случае сумма вклада получилась меньше.

5. Проведя усовершенствование технологического процесса предприятие в течение пяти последующих лет планирует получение ежегодное увеличение денежного дохода на $10,000. Эти деньги оно собирается немедленно вкладывать под 10 процентов годовых, желая, через пять лет накопить сумму для приобретения нового оборудования. Какую сумму денег предприятие получит через пять лет?

Решение.

По условию задачи предприятие планирует получить аннуитет $10,000 в течение пяти лет. Для определения суммы накопленных денег необходимо вычислить будущее значение пятилетнего аннуитета при процентной ставке наращения 10 процентов. Используем формулу будущего значения аннуитета:

Наращение и дисконтирование денежных потоков - student2.ru

Такое же значение мы получаем, использовав финансовую таблицу для будущего значения аннуитета $1

6.Предприятие располагает $160,000 и предполагает вложить их в собственное производство, получая в течение четырех последующих лет ежегодно $50,000. В то же время предприятие может купить на эту сумму акции одной солидной корпорации, приносящие 12 процентов годовых. Какой вариант Вам представляется более приемлемым, если считать что более выгодной возможностью вложения денег (чем под 12 процентов годовых) предприятие не располагает?

Решение.

Для ответа на вопрос можно воспользоваться двумя способами рассуждения. Сравним будущее наращенное значение аннуитета $50,000 при процентной ставке 12 процентов с будущим значением альтернативного вложения всей суммы $160,000 при той же процентной ставке:

    • будущее значение аннуитета -

Наращение и дисконтирование денежных потоков - student2.ru

    • будущее значение $160,000 -

Наращение и дисконтирование денежных потоков - student2.ru

Результаты расчетов говорят о том, что покупка акций более выгодна, чем вложение этой же суммы денег в собственное производство.

Возможен другой подход к решению задачи, использующий приведение денежных потоков к настоящему времени. Этот подход более распространен в практике, поскольку он проще. В данном случае мы просто определяем настоящее значение аннуитета $50,000 при показателе дисконтирования 12 процентов:

Наращение и дисконтирование денежных потоков - student2.ru . Наращение и дисконтирование денежных потоков - student2.ru Сравнивая полученное значение с суммой имеющихся в настоящее время денежных средств $160,000, приходим к такому же выводу: вкладывать деньги в акции солидной компании более выгодно.

Кто-либо может заметить, что численное значение различия альтернативных вариантов вложения в настоящее время $160,000 - $151,865 = $8,135 существенно меньше численного различия через четыре года $251,760 -$238,965 = $12,795. Это закономерно ввиду феномена стоимости денег во времени: если мы дисконтируем $12,795 на четыре года при показателе дисконта 12%, то получим $8,131. Отсутствие абсолютного совпадения объясняется только погрешностью расчетов, связанной округлением долларовых сумм до целых значений.

7.Предприятие рассматривает два альтернативных проекта капитальных вложений приводящих к одинаковому суммарному результату в отношении будущих денежных доходов:

Год Проект 1 Проект 2
$3,000 $6,000
$4,000 $4,000
$5,000 $5,000
$6,000 $3,000
Всего $ $

Оба проекта имеет одинаковый объем инвестиций. Предприятие планирует инвестировать полученные денежные доходы под 18 процентов годовых. Сравните современные значения полученных денежных доходов.

Решение.

Вычислим современные значения последовательностей денежных доходов по каждому проекту, дисконтируя ежегодные доходы при показателе дисконта 18%. Расчеты проведем с помощью специальных таблиц.

Проект 1

Год Денежный поток Множитель дисконта Современное значение
$3,000 0.8475 $2,542.50
$4,000 0.7182 $2,872.80
$5,000 0.6086 $3,043.00
$6,000 0.5158 $3,094.80
Суммарное современное значение $11,553.10

Проект 2

Год Денежный поток Множитель дисконта Современное значение
$6,000 0.8475 $5,085.00
$4,000 0.7182 $2,872.80
$5,000 0.6086 $3,043.00
$3,000 0.5158 $1,547.40
Суммарное современное значение $12,548.20

По результатам расчетов можно сделать вывод о предпочтительности второго проекта.

8.Предположим Вы заключили депозитный контракт на сумму $4,000 на 3 года при 12-и процентной ставке. Если проценты начисляются ежегодно, какую сумму Вы получите по окончании контракта?

9.Финансовый менеджер предприятия предложил Вам инвестировать Ваши $10,000 в его предприятие, пообещав возвратить $13,000 через два года. Имея другие инвестиционные возможности, Вы должны выяснить, какова процентная ставка прибыльности предложенного Вам варианта.

10.Предприятие собирается приобрести через пять лет новый станок стоимостью $12,000. Какую сумму денег необходимо вложить сейчас, чтобы через пять лет иметь возможность совершить покупку, если процентная ставка прибыльности вложения составляет

а) 12 процентов?

б) 13 процентов?

11.Предприятие располагает $600,000 и предполагает вложить их в собственное производство, получая в течение трех последующих лет ежегодно $220,000. В то же время предприятие может купить на эту сумму акции соседней фирмы, приносящие 14 процентов годовых. Какой вариант Вам представляется более приемлемым, если считать что более выгодной возможностью вложения денег (чем под 14 процентов годовых) предприятие не располагает?

12.Предприятие рассматривает два альтернативных проекта капитальных вложений приводящих к одинаковому суммарному результату в отношении будущих денежных доходов:

Год Проект 1 Проект 2
$12,000 $10,000
$12,000 $14,000
$14,000 $16,000
$16,000 $14,000
$14,000 $14,000
Всего $ $

Оба проекта имеет одинаковый объем инвестиций. Предприятие планирует инвестировать полученные денежные доходы под 18 процентов годовых. Сравните современные значения полученных денежных доходов.

13.Вы имеете 10 млн. р. и хотели бы удвоить эту сумму через 5 лет. Каково минимально приемлемое значение процентной ставки?

14.Банк предлагает 15% годовых. Чему должен быть равен изначальный вклад, чтобы через 3 года иметь на счете 5 млн. р.

15.Какая сумма предпочтительнее при ставке 9% - $1000 сегодня или $2000 через 8 лет?

16.Рассчитайте наращенную сумму с исходной суммы в 2 млн. р. при размещении ее в банке на условиях начисления сложных процентов, если годовая ставка 15%, а периоды наращения 90 дн., 180 дн., 1 год, 5 лет, 10 лет.

17.Приведены данные о денежных потоках:

Поток Год
 
А
Б - - - -
В - - - -
Г - -

Рассчитайте для каждого потока показатели FV при r = 12% и PV при r = 15% для двух случаев: а) потоки имеют место в начале года; б) потоки имеют место в конце года.

18.Анализируются два варианта накопления средств по схеме аннуитета (поступление денежных средств осуществляется в конце соответствующего временного интервала):

План 1: вносится вклад на депозит $500 каждые полгода при условии, что банк начисляет 8% годовых с полугодовым начислением процентов.

План 2: делается ежегодный вклад в размере $1000 на условиях 9% годовых при ежегодном начислении процентов.

Определите:

а) какая сумма будет на счете через 10 лет при реализации каждого плана? Какой план более предпочтителен?

б) изменится ли ваш выбор, если процентная ставка в плане 2 будет снижена до 8,5%?

19.Каков ваш выбор - получение $5000 через год или $12000 через 6 лет, если коэффициент дисконтирования равен: а) 0%; б) 12%; в) 20%?

20.Рассчитайте будущую стоимость $1000 для следующих ситуаций:

а) 5 лет, 8% годовых, ежегодное начисление процентов;
б) 5 лет, 8% годовых, полугодовое начисление процентов;
в) 5 лет, 8% годовых, ежеквартальное начисление процентов.

21.Рассчитайте текущую стоимость каждого из приведенных ниже денежных поступлений, если коэффициент дисконтирования равен 12%: а) 5 млн. р., получаемые через 3 года; б) 50 млн. р., получаемые через 10 лет.

22.Фирме нужно накопить $2 млн., чтобы через 10 лет приобрести здание под офис. Наиболее безопасным способом накопления является приобретение безрисковых государственных ценных бумаг, генерирующих годовой доход по ставке 8% при полугодовом начислении процентов. Каким должен быть первоначальный вклад фирмы?

23.Что более предпочтительно - получить $2000 сегодня или $5000 через 8 лет, если коэффициент дисконтирования равен 8%?

24.Стоит ли покупать за $5500 ценную бумагу, генерирующую ежегодный доход в размере $1000 в течение 7 лет, если коэффициент дисконтирования равен 8%?

25.Предприятие имеет возможность участвовать в некоторой деловой операции, которая принесет доход в размере 10 млн. р. по истечении двух лет.

1. Выберите один из двух вариантов получения доходов: либо по 5 млн. р. по истечении каждого года, либо единовременное получение всей суммы в конце двухлетнего периода.

2. Существуют ли такие условия, когда выбор варианта для Вас безразличен?

3. Изменится ли ваше решение, если доход второго года уменьшится до 4 млн. р.?

Сформулируйте различные условия, при которых вариант единовременного получения дохода может быть предпочтительным.

26.Оплата по долгосрочному контракту предполагает выбор одного из двух вариантов: 25 млн. р. через 6 лет или 50 млн. р. через 12 лет. При каком значении коэффициента дисконтирования выбор безразличен?

27.Фирме предложено инвестировать 100 млн. р. на срок 5 лет при условии возврата этой суммы частями (ежегодно по 20 млн. р.); по истечении 5 лет выплачивается дополнительное вознаграждение в размере 30 млн. р. Примет ли она это предложение, если можно депонировать деньги в банк из расчета 8% годовых, начисляемых ежеквартально?

5. Оценка стоимости ценных бумаг предприятия и составление графиков возврата долгосрочных кредитов

Наши рекомендации