Риск и его измерение
Доминирующее определение риска как дисперсии или стандартного (среднеквадратичного) отклонения доходности связано с тем, что наиболее простой оценкой значения случайной величины - доходности - является ее точечная оценка в виде математического ожидания, а дисперсия является интегральной точечной характеристикой вариабельности доходности относительно ее математического ожидания. В теории вероятностей и математической статистике выработаны достаточно простые правила операций с точечными оценками и процедуры определения статистической значимости оценок, что упрощает использование моделей и методов оптимизации портфеля. Этот факт является немаловажным в объяснении доминирующей роли точечных оценок вариации, если принять во внимание, что в 50-х годах работы Марковица не привлекли особого внимания экономистов, поскольку применение теории вероятностей к финансовой теории было в то время весьма необычным и даже с простой мерой риска алгоритмы Марковица оказались сложными для вычислительных машин того времени. (Поэтому фактическая реализация его идей была осуществлена гораздо позднее выхода его работ, а Нобелевская премия по экономике ему была присуждена только в 1990 году.) Таким образом, доминирующее определение риска как дисперсии доходности объясняется простотой этого измерителя и в какой-то степени традицией.
В то же время адекватность такого измерителя риска зачастую подвергается сомнению, а в теории и на практике можно встретить использование других измерителей риска. Недостатки дисперсии как модели риска обсуждаются, например, в [4 стр.179-185] и в [6], основные из них следующие :
* дисперсия характеризует все отклонения доходности от своего математического ожидания, в то время как с термином «риск» в сознании инвестора ассоциируются только неблагоприятные для него отклонения;
* дисперсия не раскрывает распределение (структуру) отклонений, в результате одна ценная бумага с преобладанием положительных отклонений доходности может иметь такую же дисперсию, как другая ценная бумага с преобладанием отрицательных отклонений доходности, следовательно, от инвестора будет скрыт больший риск потерь при покупке второй из них.
Главное отличие альтернативных измерителей риска становится ясно очерченным, если поставить вопрос так: риск чего? В случае применения дисперсии в качестве измерителя ответ будет такой: риск отклонения доходности вообще, а при применении других измерителей ответ будет более конкретным: риск недополучения дохода, риск убытков, риск банкротства и др. Но тогда ценная бумага должна характеризоваться целым рядом показателей риска, относящихся к каждому конкретному неблагоприятному событию, то есть теряется свойство интегральности показателя.
В [4] приводятся следующие альтернативные измерители риска:
* полудисперсия - для симметричных распределений отклонений от математического ожидания доходности;
* вероятность получения дохода меньше ожидаемого;
* средняя величина отрицательных отклонений доходности.
В п.3.3 описано решение задачи оптимизации портфеля с использованием последнего из названных показателей. Нелишним будет заметить, что в первых работах Марковица также использовался этот показатель, но в дальнейшем он от него отказался в пользу стандартного отклонения ввиду возрастания сложности алгоритмов оптимизации.
Несмотря на отмеченные недостатки, дисперсия в качестве измерителя риска фондового актива показала свою эффективность в большинстве практических задач, а простота и интегральность этого показателя выгодно отличают его от альтернативных измерителей риска. Эти обстоятельства и обусловили преимущественное его применение.