Арбитражная модель оценки требуемой доходности

Арбитражная теория Росса (arbitrage theory - ART) утверждает, что доходность акции зависит частично от макроэкономических факторов и частично от факторов, влияющих на специфический (диверсифицируемый) риск. Равновесная модель САРМ объясняет различие ожидаемых доходностей акций ki. различной чувствительностью к доходности рыночного портфеля, т.е. различием β-коэффициентов. Арбитражная теория Росса также ставит цель объяснить различие ожидаемых доходностей по акциям в ситуации равновесия. Отличие от САРМ заключается в предположении о связи доходности с некоторым количеством факторов. Доходность рыночного портфеля (как в САРМ) может быть одним из факторов.

Арбитражная теория — это альтернатива САРМ, где доходность акции является линейной функцией одного общего фактора — доходности рыночного портфеля. Идея компенсации большего риска по сравнению с безрисковыми активами остается неизменной. Если есть безрисковый вариант займа и инвестирования (этот вариант обеспечивает доходность или стоимость капитала при займе денег в размере kf), то: 1) за больший риск инвесторы требуют большую доходность; 2) получение повышенной доходности означает наличие факторов риска. Инвесторы на рынке стремятся увеличить доходность портфелей без увеличения риска. Такая возможность может быть реализована через арбитражный портфель, т.е. формирование портфеля путем одновременной продажи акций по относительно высокой цене и покупки этих же акций в другом месте по относительно низкой цене. Такая операция позволит инвестору, не вкладывая средства, получить безрисковый доход.

Арбитражные возможности появляются, если по акциям или портфелям с одинаковой чувствительностью к факторам ожидается различная доходность. Инвесторы устремляются к получению безрискового дохода, и возможность арбитража исчерпывается. Таким образом, в равновесии акции и портфели с одинаковой чувствительностью к факторам имеют одинаковые значения ожидаемой доходности (с поправкой на специфический риск).

Преимуществом АРМ является меньшее число предположений о поведении инвестора на рынке по сравнению с САРМ. Кроме того, существуют многопериодные модификации АРМ, в то время как САРМ однопериодная модель.

Предполагается, что фактическая (наблюдаемая) доходность любой акции i является линейной функцией z факторов:

Арбитражная модель оценки требуемой доходности - student2.ru

где ki*— наблюдаемая доходность по акции i; %!

ki — ожидаемая доходность акции i;

biz — чувствительность доходности акции i к фактору z (иногда используется термин "факторная нагрузка");

Fz — значение фактора z,

u i— случайная величина (с нулевым средним значением), как компонента несистематического риска по акции i.

В модели рассматриваются портфели из имеющихся на рынке акций и выводится условие существования арбитражных портфелей. Предполагается, что число включенных в рассмотрение акций значительно превышает число факторов z. Построение арбитражного портфеля означает отсутствие дополнительного инвестирования (деньги для покупки ценных бумаг образуются через продажу других ценных бумаг) и отсутствие риска. Например, пусть индивид имеет портфель акций и хочет заработать на арбитражных операциях. Инвестор не предполагает инвестировать в изменение долей акций в имеющемся портфеле. Изменение портфеля достигается изменением стоимости акции i в портфеле. Это изменение обозначим через wi. wi показывает вес акции i в арбитражном портфеле. Нулевое инвестирование означает, что Σwi = 0. Безрисковость портфеля требует отсутствия систематического и несистематического риска.

Доходность портфеля из п акций равна взвешенной сумме доходности по отдельным акциям, включенным в портфель:

Арбитражная модель оценки требуемой доходности - student2.ru

Элиминирование систематического риска достигается через подбор wi таким образом, чтобы для каждого фактора z взвешенная сумма мультипликаторов bz была равна нулю (мультипликаторы систематического риска по каждому фактору дают средневзвешенное нулевое значение): Σwibiz = 0 по каждому фактору от 1 до z. Чувствительность портфеля к фактору z равна средневзвешенной чувствительностей акций, включенных в портфель.

Рассмотрение большого числа активов в портфеле позволяет устранить специфический риск и при большом значении п взвешенная сумма ui →0. Σwiui = 0

Таким образом, диверсификация портфеля позволяет записать выражение для доходности портфеля без последнего слагаемого специфического риска. Итоговое выражение доходности портфеля:

Арбитражная модель оценки требуемой доходности - student2.ru

Фактически построен портфель с нулевым бета по каждому фактору, для него не требуется дополнительных инвестиций (какие-то значения wi положительны, что означает покупку акций, какие-то — отрицательны, что означает продажу). Систематический риск устранен. Если доходность kp положительна, то портфель является арбитражным и инвестор будет стремиться построить его. Покупка и продажа определенных акций на рынке большим числом инвесторов приведут к изменению цен и повлияют на ожидаемую доходность. Доходность портфеля не может быть случайной величиной: kp = Σwiki

В ситуации равновесия доходность построенного портфеля (и всех других арбитражных портфелей) должна быть нулевой: Σwiki = 0

Тогда из линейной алгебры следует, что вектор ожидаемой доходности ki может быть представлен как линейная комбинация вектора постоянных значений (коэффициентов λ.) и вектора мультипликаторов. Должно существовать z + 1 постоянных коэффициентов λ0, λ1, λ2, ..., λz, таких, которые позволят разложить ожидаемую доходность акции i:

Арбитражная модель оценки требуемой доходности - student2.ru

где biz — чувствительность доходности акции i к фактору z.

Для интерпретации коэффициентов λ рассмотрим безрисковый актив с доходностью kf. kf — постоянная величина, и чувствительность к факторам у нее нулевая boz = 0 для всех z = 1 ,... Следовательно, kf = λ0. Теперь выражение для ki можно представить в виде премии к безрисковому активу:

Арбитражная модель оценки требуемой доходности - student2.ru

В этом случае получаем экономический смысл для коэффициентов λz — это премия за риск (цена риска) в равновесии для фактора z.

Так как построена линейная зависимость, то естественно представить ее в виде стандартного выражения прямой: у = а + bх, где b равен тангенсу угла наклона прямой.

Арбитражная модель оценки требуемой доходности - student2.ru

где σz — ожидаемая доходность портфеля с единичной чувствительностью к фактору z и нулевой чувствительностью к другим факторам. Такой портфель носит название чистого факторного портфеля. Тогда выражение цены риска принимает вид

Арбитражная модель оценки требуемой доходности - student2.ru .

Коэффициент λ показывает избыточную доходность (по сравнению с безрисковой доходностью) по чистому факторному портфелю. Это премия за факторный риск.

Часто для представления арбитражной модели используется версия с премиями за факторный риск:

Арбитражная модель оценки требуемой доходности - student2.ru

Некоторые акции более чувствительны к конкретному фактору, чем другие. Например, акции РАО "Газпром" более чувствительны к изменению цен на бензин, чем акции кондитерской фабрики "Красный Октябрь". Если фактор 1 — изменение цен на бензин, то 6, будет выше для РАО "Газпром", чем для АО "Красный Октябрь".

Арбитражная модель не определяет конкретное число факторов и их значимость для данной акции, так как для каждой акции значимыми будут свои факторы. Факторами могут быть фондовый индекс (как в САРМ рыночный портфель), валовой национальный продукт, цены на энергоносители, процентная ставка и др. Ряд исследований выявил наиболее значимые факторы. Например, расчеты по американскому рынку выявили в числе значимых макроэкономических факторов такие, как изменения в отраслевом производстве, инфляция, индивидуальное потребление, предложение денег и процентная ставка. Агентство Salomon Brothers при оценках по многофакторной модели включает в рассмотрение пять факторов: инфляцию, темп роста валового национального продукта (ВНП), процентную ставку, индекс изменения цен на нефть, темп роста расходов на оборону.

Обобщенно можно выделить три группы факторов, обязательно включаемых в арбитражную модель:

1) показатели общей экономической активности (это может быть темп роста промышленного производства, темп роста усредненных продаж, темп роста ВНП);

2) показатели, отражающие инфляцию;

3) показатели процентной ставки (разница между долгосрочной и краткосрочной ставками, ставка доходности фондового (рыночного) индекса).

?Может ли количество факторов, определяющих доходность актива, изменяться со временем? Что может породить эти изменения?

Заключение

• Риск может быть определен (для корпорации особое значение имеет чистый риск) как вероятность осуществления неблагоприятного события, когда фактически полученные значения результата окажутся меньше прогнозируемых. Для инвестора риском является как положительное, так и отрицательное отклонение от прогнозируемого результата (так называемый спекулятивный риск).

• Среднерыночный инвестор рассматривается как противник риска, он требует определенной компенсации за инвестирование и владение рисковым активом. Методом снижения риска является диверсификация капитала инвестора, т.е. инвестирование в различные рисковые и безрисковые активы. Не весь риск может быть нивелирован диверсификацией.

• Рациональный инвестор владеет портфелем рисковых активов, так как диверсификация, т.е. комбинация активов, обеспечивает меньший риск, чем обособленное владение ими.

• Для рискового актива значения результата не гарантированы и носят вероятностный характер. Ожидаемая доходность по рисковому активу определяется вероятностным распределением возможных значений доходности. При выборе из нескольких активов равного риска рациональный инвестор отдаст предпочтение активу с наибольшим значением ожидаемой доходности. Чем выше вероятность отклонения фактической доходности по активу от значения ожидаемой доходности, тем выше риск владения данным активом. Для инвестора — противника риска больший риск владения должен компенсироваться большим значением ожидаемой доходности.

• Акция является рисковым активом, так как получение владельцем дохода по ней не гарантируется и зависит от ряда макроэкономических и внутрикорпоративных (специфических) факторов. Возможности размещения акций корпорацией и увеличения собственного капитала (через реинвестирование прибыли) зависят от оценки инвесторами доходности по данной акции с учетом риска. В общем риске акции выделяют две составляющие: специфический риск данной корпорации, который может быть нивелирован полностью диверсификацией капитала инвестора, и рыночный риск (систематический), который не может быть устранен диверсификацией (так называемый недиверсифицируемый риск). Хорошо диверсифицированный портфель инвестора (включающий все рисковые активы), называемый рыночным портфелем, характеризуется только систематическим риском.

• Возможность выбора из множества активов с различным риском (в том числе безрисковых активов с гарантированным доходом) и различными значениями ожидаемой доходности порождает для инвестора понятие требуемой доходности капитала. Требуемая доходность должна покрывать держателю актива временную стоимость денег, ожидаемую инфляцию и риск инвестирования в данный актив. Самым сложным элементом принятия финансовых решений является оценка компенсационной премии за риск.

• Возможность формирования портфеля рисковых активов приводит к ситуации на рынке, когда инвестору компенсируется только систематический риск. Соответственно риск актива будет рассматриваться инвестором с точки зрения влияния на риск портфеля (на рыночный риск). Чем больше рыночная составляющая риска для рассматриваемого актива, тем больший эффект оказывает включение этого актива в портфель и больше требуемая компенсация. Таким образом, премия за риск актива определяется его рыночным риском.

Мультипликатором рыночного риска актива (относительно среднего) является коэффициент бета (β). Коэффициент оценивает степень движения доходности данного актива по отношению к доходности рынка (хорошо диверсифицированного портфеля).

Среднерыночная акция (акция среднего риска) имеет β =1. Премия за риск по активу Т равна произведению его коэффициента βт на рыночную премию за риск (km – kf), где km —ожидаемая доходность хорошо диверсифицированного портфеля (рыночного портфеля).

• Уравнение рыночной линии ценной бумаги показывает связь индикатора систематического риска данной бумаги по отношению к рыночному портфелю с требуемой доходностью: требуемая доходность по ценной бумаге Т (kT) равна сумме безрисковой доходности (kf) и компенсационной премии за рыночный риск, помноженной на коэффициент β по данной ценной бумаге: kT = kf + (km – kf)βT. Уравнение рыночной линии ценной бумаги называют моделью оценки долгосрочных активов (САРМ).

• В равновесном положении (спрос на актив равен предложению) ожидаемая доходность равна требуемой. Однако требуемая доходность постоянно меняется (изменение безрисковой доходности с учетом возможного роста или снижения инфляции, изменение β-коэффициента).

• Попытки практического применения САРМ выявили ряд ограничений. Наиболее известной альтернативой САРМ является арбитражная модель оценки доходности актива (АРМ).

Вопросы. Задачи. Решения

1. Даны три ценные бумаги А, Б и В со следующими параметрами:

Арбитражная модель оценки требуемой доходности - student2.ru

Какую ценную бумагу вы предпочтете и почему?

Решение

Ценная бумага А предпочтительнее, так как обеспечивает наибольшее значение доходности при наименьшем риске.

2.Строится портфель из двух активов А и Б со следующими характеристиками:

Арбитражная модель оценки требуемой доходности - student2.ru

1. Оцените ожидаемую доходность и стандартное отклонение для портфеля с равными долями инвестирования.

2. Согласитесь ли вы инвестировать в такой портфель или предпочтете инвестирование только в один актив? Объясните свою позицию.

Решение

1. 15%, 30,9%.

2. Выбор зависит от отношения к риску. При негативном отношении к риску выбирается актив А, при готовности рисковать — актив Б.

3.Рыночный портфель состоит из тысячи активов. Рыночная оценка этого портфеля — 1 трлн. долл. Риск рыночного портфеля — 20% (стандартное отклонение). В портфель добавляется новый актив с рыночной оценкой 1 млрд. долл. и оценкой риска 80%.

Коэффициент корреляции с рынком равен 0,5. Как включение нового актива повлияет на риск рыночного портфеля?

Решение

Доля инвестирования в новый актив равна 1/1001. Риск рыночного портфеля до включения нового актива равен 0,04. Рассчитаем риск портфеля после включения нового актива,

Арбитражная модель оценки требуемой доходности - student2.ru

?Изменится ли вывод, если доля инвестирования в актив велика (например, 20% ; рыночного портфеля)?

4. Оцените премию за риск по акции, имеющей значение бета-коэффициента 1,3, если рыночная премия за риск равна 10%.

Решение

Арбитражная модель оценки требуемой доходности - student2.ru

5. Рассмотрите финансовый актив Т (акцию), стандартное отклонение по которому показано на рис. 3.22а, характеристическая прямая — на рис. 3.226 и требуемая доходность (как компенсация систематического риска с бета-коэффициентом 1,3) — на рис. 3.22в.

Общий риск данной ценной бумаги выражается дисперсией доходности (квадратом стандартного отклонения). β акции Т = 1,3 , а σт = 5%. Для акции Т стандартное отклонение равно 15%, следовательно, общий риск равен 225 (σT = 225). Выделите в общем риске две компоненты.

Решение

Общий риск любого актива в соответствии с концепцией Шарпа может быть разделен на две компоненты: систематический риск σ2систем и несистематический (специфический или диверсифицируемый) σ2специф.

Следовательно, систематический риск равен 42,25 (σ2 систем(Т) = 42,25), а специфический риск равен 182,75 (σ2специф(Г) = 182,75). Для акции Т главным источником риска (182,75 / 225 =81%) является специфический риск, который теоретически может быть устранен диверсификацией. Чем ближе точка Т находилась бы к точке С на рис. 3.22а, тем больше была бы компенсация за систематический (рыночный) риск (так как акция Т в значительной степени коррелировала бы с рынком и систематическая составляющая риска была бы значительной).

Чем меньше акция Т коррелирует с рынком, тем меньше компонента систематического риска и меньше требуемая компенсация за систематический риск (точка Г находится ближе к точке Д3).

Если бы рынок компенсировал весь риск, то доходность акции Т была бы 40% (10% безрисковой доходности + 2 х Общий риск ценной бумаги) по прямой СМL (2 х Наклон СМL = (km –kf)/σm = (20 - 10) /5 = 2). Так как общий риск может частично нивелироваться диверсификацией, то рынок обеспечивает компенсацию только в размере 23% по САРМ.

6. Американская компания — производитель продуктов питания из страусиного мяса рассматривает варианты выхода на внешний рынок через открытие франчайзинговых предприятий. Так как выход на рынки Европы или Японии представляется сложным, были рассмотрены возможные варианты инвестирования в развивающиеся страны с большим рынком сбыта. Финансовый менеджер компании располагает фиксированной суммой для инвестирования, но опасается вложить всю сумму целиком в одну страну. Компания остановила внимание на трех странах: 1 — Россия, 2 — Украина, 3 — Китай. Были рассчитаны попарные ковариации, и на основе прошлых данных оценена ожидаемая доходность по инвестированию в каждую страну.

1. Как распределить выделенный капитал между странами, чтобы минимизировать риск, если ковариация по инвестиционным вариантам имеет следующие значения:

Арбитражная модель оценки требуемой доходности - student2.ru

Нужны ли данные о риске и доходности по каждому варианту?

2. Прогнозируемые значения доходности по трем вариантам равны соответственно k1, = 24%, k2 = 24%, k3 = 20%. Безрисковая доходность оценена в 8% годовых. Найдите оптимальный для компании портфель. Будет ли этот портфель оптимальным для других американских компаний? Какие предположения фактически здесь сделаны?

3. Предположим, безрисковый вариант инвестирования отсутствует. Существует ли оптимальный портфель? Существуют ли эффективные портфели? Найдите выражение для вычисления эффективных портфелей с тремя инвестиционными возможностями.

Решение

1. Задачу финансового менеджера по выходу на внешний рынок можно представить как задачу построения портфеля из трех активов с минимальным

Арбитражная модель оценки требуемой доходности - student2.ru

3. Единый для всех оптимальный портфель появляется только при условии существования доступной всем безрисковой процентной ставки, что доказал Д. Тобин.

Эффективных портфелей много. Отдельные эффективные портфели могут быть найдены относительно легко (например, портфель с минимальным u1088 риском). Для других портфелей можно построить касательную от каждой точки ординаты (ось доходности) к множеству портфелей. Для различных значений безрисковой доходности это будут гипотетические оптимальные портфели.

Для решения задачи можно выбрать любую доходность, которая меньше ожидаемой доходности портфеля с минимальным риском и, приняв это значение за kf подсчитать веса гипотетического оптимального портфеля. Средневзвешенное значение (вес обозначим через *) каждого варианта инвестирования от портфеля с минимальным риском до гипотетически возможного портфеля даст альтернативное значение доли инвестирования в эффективном портфеле. В качестве произвольной доходности выберем 8%, так как задача нахождения оптимального портфеля с этим значением уже решена. Для данной постановки

Арбитражная модель оценки требуемой доходности - student2.ru

7.Оцените доходность акции с β = 0,8, если среднее значение рыночной доходности за прошлые годы равно 20%, а безрисковая доходность — 7%.

Если экспертная оценка доходности фондового рынка на будущий год на 20% выше, чем средняя оценка по прошлым годам, то на сколько процентных пунктов следует ожидать увеличение доходности акции?

Решение

Доходность акции по САРМ на основе прошлых данных:

Арбитражная модель оценки требуемой доходности - student2.ru

? Какие условия гарантируют, что рыночный портфель является эффективным портфелем?

8.Инвестиционная компания использует самую простую стратегию управления активами, инвестируя только в рисковый портфель, составленный на основе фондового индекса, и в безрисковые ценные бумаги. Доходность рискового портфеля равна доходности по фондовому индексу (22% годовых). Безрисковая доходность 10%. Если менеджер фонда ставит целью обеспечить доходность 15% годовых, то как будут распределены средства между портфелем и безрисковыми активами? Чему равно значение бета-коэффициента инвестиционной компании?

Решение

0 = 1 .

При инвестировании только в рисковые активы доходность фонда будет 22% годовых: k = 10% + (22% - 10%) х 1 = 22%. При инвестировании в безрисковые активы доходность фонда будет 10% годовых. Если доля X инвестируется в портфель рисковых активов, то доходность такой комбинации составит 22%(Х) + 1096(1 - X). 15% = 22% (X) + 10%(1 - X). X =0,42.

9.Если аналитик хочет объяснить различие доходности по акциям за прошлый отрезок времени, то какую модель (САРМ или АРМ) вы ему порекомендуете? Изменится ли рекомендация, если требуется спрогнозировать доходность акции?

10.По акциям компаний А и Б имеются следующие данные (в долл. США):

Арбитражная модель оценки требуемой доходности - student2.ru

1. Оцените риск и доходность двух активов и объясните выбор инвестора. Какой из двух активов будет обеспечивать большую доходность по модели САРМ? По компании Б наблюдался всплеск цены акции в 1994 г. Следует ли этот положительный момент рассматривать как риск? Объясните, почему риск не рассматривается только по отрицательным значениям?

2. Оцените ковариацию и коэффициент корреляции между инвестированием в компанию А и Б. Постройте портфель с весом компании А 50% и рассчитайте доходность и риск портфеля.

3. Является ли портфель с минимальным значением стандартного отклонения наилучшим для всех инвесторов? Объясните почему. Приведите примеры институциональных инвесторов, минимизирующих риск.

Решение

1. Следует рассчитать доходность по годам (в процентах годовых) и оценить стандартное отклонение по двум активам. Доходность за год = (Цена акции на конец года —Цена акции начала года + Дивиденды за год) / Цена акции на начало года. По компании А доходность за 1994 г. = (28,66 — 32,25 ++ 0,95)/ 32,25 = - 0,0819 (- 8,2%).

Арбитражная модель оценки требуемой доходности - student2.ru

Инвестирование в компанию Б более рискованно, чем в компанию А. Соответственно и доходность по компании Б выше. Выбор инвестором актива будет зависеть от его отношения к риску.

2.

Арбитражная модель оценки требуемой доходности - student2.ru

Ковариация между акциями компаний А и Б равна: 0,20794/ 3 = 0,06931. Коэффициент корреляции составит: 0,06931 / (0,1842 х 0,6848) = 0,55. Доходность портфеля из двух активов равна: 0,5 х 13,46% + 0,5 х 53,26% = = 33,36%.

Дисперсия портфеля: 0,5 х 0,1842 + 0,5 х 0,6848 + 2 х 0,5 х 0,5 х 0,55 х х 0,1842x0,6848 = 0,1605.

Стандартное отклонение равно 40,1%.

11.Рассмотрим нормальное распределение доходности рисковых активов и инвесторов, негативно относящихся к риску. При каких условиях все инвесторы выберут один и тот же портфель рисковых активов?

Рекомендуемая литература

Арбитражная модель оценки требуемой доходности - student2.ru

Наши рекомендации