Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко

Симметричные ряды встречаются крайне редко Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru . Для характеристики асимметрии используют несколько показателей:

1. Самый простой: Аs= Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru Аs>0 вытянут вправо (правосторонняя асимметрия)

Аs<0 вытянут влево (левосторонняя асимметрия)

2. Для сравнения асимметрии в нескольких рядах используется показатель относительный

Аs =( Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru )/σ

3. Наиболее часто используют центральный момент третьего порядка

Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru

μ>0 правосторонняя асимметрия

μ<0 левосторонняя асимметрия

Показатель эксцесса характеризует крутость распределения. При одной и той же средней арифметической ряд может быть островершинным и низковершинным.

Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru

Если Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru >0 – островершинный

Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru <0 – низковершинный

Пример. Расчет асимметрии.

Группы фирм по стоимости основных фондов, млн.р. Количество фирм Середина интервала
0,5-1,0 0,75
1,0-1,5 1,25
1,5-2,0 1,75
2,0-2,5 2,25

Итого 105

Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru

Показатель асимметрии

Основан на соотношении показателей центра распределения: чем больше разница между Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru или Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru , тем больше асимметрия ряда. При этом, если ( Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru )>0, асимметрия правосторонняя.

Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru

правосторонняя левосторонняя

М0е< Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru Мое> Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru

Если ( Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru )<0 – асимметрия левосторонняя.

Для сравнительного анализа степени асимметрии нескольких распределений рассчитывают относительный показатель:

Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru или Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru

Величина АS может быть положительна и отрицательна. Положительная величина указывает на наличие правосторонней асимметрии, при этом существует следующее соотношение между показателями: М0е< Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru

Отрицательный знак показателя асимметрии свидетельствует о левосторонней асимметрии: М0е> Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru .

Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru

2 1 3

1- нормальное распределение

2 – левосторонняя асимметрия

3 – правосторонняя асимметрия

Другой показатель, предложенный Линдбергом, рассчитывают по формуле

AS=n – 50

где n - % тех значений признака, которые превосходят по величине средн. арифметич.

Наиболее общим является распределение, известное как нормальное, которое может быть представлено графически в виде симметричной колокообразной кривой. Но это бывает крайне редко.

Куполообразная форма кривой показывает, что большинство значений концентрируются вокруг центра измерения.

Закон нормального распределенияпредполагает, что отклонение от среднего значения является результатом большого количества мелких отклонений, что позитивные и негативные отклонения равновероятны и что наиболее вероятным значением всех в равной мере надежных измерений является их арифметическая средняя.

Кривая распределения, выражающая общую закономерность данного типа распределения, называется теоретической кривой распределения.

Фактическое распределение отличается от теоретического в силу влияния случайных факторов. Их влияние сглаживается с увеличением V исследуемой совокупности. Большое значение имеет сопоставление фактических кривых распределения с теоретическими.

Уравнение нормальной кривой выражено посредством Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru и стандартного отклонения L.

В действительностикривая может иметь вытянутую форму (там, где вокруг средней арифметической концентрируется огромное большинство зарегистрированных значений) и приплюснутую форму (когда отклонения от средней относительно велики).

Необходимо запомнить

В этих пределах заключено

около 68% общей площади

кривой

L L

1. Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru

Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru

2. 68% общего числа частот

2L 2L

Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru

Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru

99,73% общего числа частот

3L 3L

3. Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru

Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru

99,994% всей площади

4L 4L

4. Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru

Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru

Пример. Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru нормального распределения = 1200, L = 2, то известно, что не менее 68% всех наблюдений лежат между значениями 98 и 102 и что почти все наблюдения 99,73% от 94 до 106.

Показатель эксцесса

Для симметричного распределения рассчитывается показатель эксцесса (островершинности).

Эксцесс – выпад вершины эмпирического распределения вверх или вниз от вершины кривой нормального распределения.

Линдберг предложил следующий показатель

Ех = n – 38,9, где n – доля (%) количества вариантов, лежащих в интервале, = ½Б в ту или другую сторону от Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru .

Наиболее точным является показатель, использующий центральный момент четвертого порядка

Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru

В кривой нормального распределения

Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru

Если ЕХ>0, то эксцесс считают положительным (распределение островершинное).

Если ЕХ<0, то эксцесс отрицательный (распределение низковершинное).

Пример.

Итоги сдачи экзамена по математике студентов 1 курса.

Получаемые оценки и баллы Кол-во студентов, получивших данную оценку  
х f xf |x- Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru | |x- Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru |f (x- Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru )2 (x- Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru )2f
1,6 6,4 2,56 10,24
0,6 4,8 0,36 2,88
0,4 2,8 0,16 1,12
1,4 8,4 1,96 11,76
Итого: 4,0 22,4 5,04 26,00

1. Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru =90/25=3,6

2. L=22,4/25=0,9

3. σ2=26/25=1,04

4. σ= Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru

5. Показатель асимметрии А3= Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru0=3,6-3=0,6, следовательно, график будет вытянут вправо.

6. Показатель эксцесса

Показатели асимметрии и эксцесса. Симметричные ряды встречаются крайне редко - student2.ru

σ4=1,042=1,08

Ех=2/1,08-3=-1,15 Распределение низковершинное.

Наши рекомендации