Где on — погашение процентов; of— погашение кредита.
Пример 15. Какова величина ежегодного взноса в погашение кредита $ 15000, предоставленного на 5 лет под 10 % годовых.
РМТ = 3956,96.
Пример 16. У Вас есть долг 1000 ден. Ед. на 5 лет под 10% С долгом Вы рассчитываетесь путем периодических платежей в конце каждого года. Каждый год Вы платите для того, чтобы рассчитаться с долгом и процентами по нему. Условия кредита: обычный вариант, годовые выплаты. Ответ 263,8
Год | Остаток долга на начало года | Сумма% | Остаток долга на конец года | Взнос на амортиз | Погашение основной суммы | Остаток на конец долга |
1000,00 | 100,00 | 1100,00 | 263,80 | 163,80 | 836,20 | |
836,20 | 83,62 | 919,82 | 263,80 | 180,18 | 656,02 | |
656,02 | 65,60 | 721,62 | 263,80 | 198,20 | 457,82 | |
457,82 | 45,78 | 503,60 | 263,80 | 218,02 | 239,80 | |
239,80 | 23,98 | 263,78 | 263,80 | 239,82 | -0,02 |
Используя аналогичные рассуждения, можно получить величину взноса на амортизацию капитала для авансового аннуитета:
ПРАКТИКУМ
Временная теория денег
Задание №1.
Индейцы продали о. Манхэттен в 1626 году за товары стоимостью $24. Какая сумма накопилась бы на счете сегодня, если бы они вложили эти деньги в банк под 6% годовых. Используйте технику простого и сложного процента.
Задание №2.
Стоимость земли, купленной за $8000 повышается на 15% в год (по сложному проценту). Сколько она будет стоить через 3 года.
Задача №3.
Предприниматель только что заплатил $100 за опцион на покупку земли. Опцион дает ему право приобрести собственность за $10000 по истечении двух лет. Уже выплаченные за опцион $100 не будут включены в цену покупки. Какую сумму сегодня необходимо положить в банк, выплачивающий 10% годовых при ежеполугодовом накоплении с тем, чтобы через два года иметь нужную сумму для приобретения собственности?
Задача №4.
Вкладчик хочет получить $8000, вложив сегодня $1000 под 12% годовых. Сколько полных платежных периодов понадобится для осуществления цели?
Задание №5.
Пенсионный фонд принимает взносы под 10% годовых. Какая сумма будет накоплена к выходу на пенсию, если из зарплаты в конце каждого из 10 лет перечислять в пенсионный фонд $500.
Задача №6.
Каждый месяц вы получаете от квартиры сданной в аренду $50. Эти деньги вы вкладываете в банк под 10% годовых. Сколько денег у вас будет через 5 лет? Задание №7.
Молодая семья планирует купить квартиру через 5 лет. Ее доходы позволяют в начале каждого года вкладывать в банк $1000 под 10% годовых. Сколько денег будет на счете через 5 лет.
Задание №8.
Владелец жилой недвижимости планирует заменить кровлю на своих зданиях через 5 лет. Он полагает, что через 5 лет это ему обойдется в $20000. Какую сумму он должен депонировать по окончании каждого года с учетом того, что средства на счете будут накапливаться по годовой ставке 10%.
Задача №9.
Через 5 лет понадобится $20000. Какую сумму депонировать в начале каждого года на счет в банк, начисляющий 10% годовых?
Задание №10.
Сколько надо положить на счет в банк под 10% годовых, чтобы через 10 лет купить квартиру за $30000.
Задача №11.
Через 7 лет необходимо иметь $3000. Достаточно ли положить в банк $1200, если он начисляет процент ежеквартально, годовая ставка равна 10%.
Задание №12.
Земельный спекулянт рассчитывает, что через 2 года массив площадью 10 га может быть продан за $1000 за га. Какая сегодняшняя цена позволит спекулянту получить 15% годовой доход.
Задача №13.
Определить сумму сегодняшних инвестиций, дающих право ежегодного получения $100 дохода в конце каждого года на протяжении 4 лет при ставке дисконта 10%. Сделать проверку, используя "метод депозитной книжки".
Задача №14.
Какова текущая стоимость ипотечного кредита, предусматривающего выплату $1000 в начале каждого года в течение 15 лет. Ставка дисконта 10%.
Задание №15.
Аренда магазина принесет его вкладчику в течение первых трех лет ежегодный доход $3000, в последующие 5 лет доход составит $4500. Определить текущую стоимость совокупного дохода, если ставка дисконта 10%.
Задание №16.
Какую сумму целесообразно заплатить инвестору за объект недвижимости, который можно эффективно эксплуатировать в течение 5 лет. Объект в конце каждого года приносит доход по 350000 руб. Требуемый доход на инвестиции — 20%. Проверить методом "депозитной книжки".
Задание №17.
Рассчитать величину ежегодного взноса в погашение кредита в сумме $15000, предоставленного на 5 лет под 10% годовых.
Задание №18.
Банк предоставляет кредит $10000. Его нужно погашать в конце каждого полугодия в течение 2 лет. Кредит предоставлен под 10% годовых. Каким будет каждый полугодовой платеж.
Задание №19.
Какое вложение денег является наиболее выгодным:
a) приобретение права аренды магазина за $30000 на 7 лет, магазин приносит ежегодно $8000 чистого операционного дохода;
b) вложить $30000 в банк под 10% годовых.
Задание №20.
Строительная фирма предлагает вам квартиру на таких условиях. Вы в течение 25 лет ежегодно выплачиваете $4000 при ставке ипотеки 10%. Оценщик оценил вашу квартиру в $30000. Согласитесь ли вы на этот контракт.
Задание №21.
Отдельно стоящий магазин для розничной торговли сдан в аренду на 25 лет за $5000 в год, вносимых в конце каждого года. У арендатора есть опцион на покупку здания по истечении срока аренды за $65000. В этом случае инвесторы стремятся к получению 10%-ного дохода на инвестиции. Какова текущая стоимость объекта.
Задание №22.
Вы выиграли конкурс. По его условиям вы можете получить $1000 сейчас наличными или $2000 — через 5 лет. Какой приз вы выберете, если банк принимает вклады под 10% годовых?
Ипотечное кредитование
Задание №1.
Однокомнатная квартира стоит $9000 в наличии имеется $2000. Недостающую сумму решено взять в банке под 20% годовых на 5 лет. Составить схему погашения ипотечного кредита.
Задание №2.
Кредит в размере $1000 выдан на 4 года под 12% годовых. Возмещение основной суммы кредита происходит ежегодно равными частями. Построить схему погашения кредита.
Задание №3.
Начальная сумма кредита $30000, срок кредита 5 лет, начальная норма процента - 10%. Начальная норма будет скорректирована в сторону увеличения на 1% в конце 1 года и еще на 2% в конце второго года, далее не изменится. Построить схему погашения кредита.
Задание №4.
Сумма кредита равна $25000, номинальная ставка определена в 10%, ежегодный платеж должен составлять $2651,98. Какое время потребуется для полной амортизации кредита. Постройте таблицу погашения кредита на первые 3 года.
Задание №5.
Стоимость объекта недвижимости $250000. Коэффициент ипотечной задолженности — 40%. Кредит предоставлен на 5 лет под 5% годовых и предусматривает периодическую выплату только процентов. Однако через 5 лет должна быть единовременно погашена вся основная сумма кредита. Заемщик хочет в конце каждого года вносить в банк определенную сумму с тем, чтобы иметь возможность выплачивать проценты по кредиту и погасить долг через 5 лет. Банк начисляет ежегодно 10% годовых. Какую сумму необходимо вносить в банк для погашения кредита.
Задача №6.
Ипотечный кредит на сумму $50000 выдан на 15 лет при 10% годовых и ежегодных платежах. За досрочное погашение кредита предусмотрен штраф в размере 8% от невыплаченной суммы кредита. Определить действительную норму процента по кредиту при условии его досрочного погашения в конце 3 года.
Задача №7.
Господин Иванов купил квартиру стоимостью $20000 с привлечением ипотечного кредита. При оформлении сделки он заплатил фирме $3000, а остальные обязался выплатить в течение года под 35% в год. Определите сумму ежемесячных платежей по кредиту.